Discrete solitons and vortices on anisotropic lattices.

We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. For fundamental solitons, we develop a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the fundamental solitons and simplest on-site-centered vortex solitons ("vortex crosses") feature enhanced or reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy on the so-called "super-symmetric" intersite-centered vortices ("vortex squares"), with the topological charge equal to the square's size : we predict in an analytical form by means of the Lyapunov-Schmidt theory, and confirm by numerical results, that arbitrarily weak anisotropy results in dramatic changes in the stability and dynamics in comparison with the degenerate, in this case, isotropic, limit.

[1]  Andreas Tünnermann,et al.  Discrete diffraction in two-dimensional arrays of coupled waveguides in silica. , 2004, Optics letters.

[2]  Kim Ø. Rasmussen,et al.  THE DISCRETE NONLINEAR SCHRÖDINGER EQUATION: A SURVEY OF RECENT RESULTS , 2001 .

[3]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[4]  D. J. Frantzeskakis,et al.  PATTERN FORMING DYNAMICAL INSTABILITIES OF BOSE–EINSTEIN CONDENSATES , 2004, cond-mat/0406657.

[5]  I Bloch,et al.  Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. , 2001, Physical review letters.

[6]  B. Malomed,et al.  Three-dimensional nonlinear lattices: from oblique vortices and octupoles to discrete diamonds and vortex cubes. , 2005, Physical review letters.

[7]  Y. Kivshar,et al.  Observation of discrete vortex solitons in optically induced photonic lattices. , 2004, Physical review letters.

[8]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[9]  Boris A. Malomed,et al.  Soliton dynamics in the discrete nonlinear Schrödinger equation , 1996 .

[10]  A R Bishop,et al.  Twisted localized modes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Alan R. Bishop,et al.  Comparison of one-dimensional and two-dimensional discrete breathers , 2001 .

[12]  Yuri S. Kivshar,et al.  Spatial optical solitons in waveguide arrays , 2003 .

[13]  P C Haljan,et al.  Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. , 2001, Physical review letters.

[14]  B. A. Malomed,et al.  Multidimensional solitons in a low-dimensional periodic potential (9 pages) , 2004 .

[15]  Randall G. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[16]  B. A. Malomed,et al.  Multidimensional solitons in periodic potentials , 2003 .

[17]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[18]  Anna Bezryadina,et al.  Dipole solitons in optically induced two-dimensional photonic lattices. , 2004, Optics letters.

[19]  D. Hennig,et al.  Wave transmission in nonlinear lattices , 1999 .

[20]  Tal Carmon,et al.  Observation of discrete solitons in optically induced real time waveguide arrays. , 2003, Physical review letters.

[21]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[22]  V. A. Brazhnyi,et al.  THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES , 2004 .

[23]  T. Hänsch,et al.  Bose–Einstein condensates in 1D- and 2D optical lattices , 2001 .

[24]  S. Aubry,et al.  Breathers in nonlinear lattices: existence, linear stability and quantization , 1997 .

[25]  Jianke Yang,et al.  Observation of two-dimensional lattice vector solitons. , 2004, Optics letters.

[26]  B. Malomed,et al.  Stable higher-order vortices and quasivortices in the discrete nonlinear Schrödinger equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  B Eiermann,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[28]  Jingjun Xu,et al.  Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains. , 2004, Physical review letters.

[29]  B. Malomed,et al.  Three-dimensional solitary waves and vortices in a discrete nonlinear Schrödinger lattice. , 2004, Physical review letters.

[30]  Vladimir V. Konotop,et al.  Nonlinear waves : classical and quantum aspects , 2005 .

[31]  B. Hubbard,et al.  Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. , 2003, Physical review letters.

[32]  Michel Peyrard Nonlinear dynamics and statistical physics of DNA , 2004 .

[33]  M. Segev,et al.  Observation of vortex-ring "discrete" solitons in 2D photonic lattices , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[34]  Jianke Yang,et al.  Fundamental and vortex solitons in a two-dimensional optical lattice. , 2003, Optics letters.

[35]  I. G. Kevrekidis,et al.  Vortices in Bose-Einstein Condensates: Some Recent Developments , 2004 .

[36]  Andrey Kobyakov,et al.  Stability of strongly localized excitations in discrete media with cubic nonlinearity , 1998 .

[37]  Bishop,et al.  Two-dimensional discrete breathers: construction, stability, and bifurcations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  J. C. van der Meer,et al.  Hamiltonian Hopf bifurcation with symmetry , 1990 .

[39]  K. Kladko,et al.  Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices , 1997, patt-sol/9701003.

[40]  A. J. Sievers,et al.  Optical manipulation of intrinsic localized vibrational energy in cantilever arrays , 2004, nlin/0403031.

[41]  Phillips,et al.  Generating solitons by phase engineering of a bose-einstein condensate , 2000, Science.

[42]  Xie Hong-kun,et al.  Nature of Science , 2002 .

[43]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[44]  B. Malomed,et al.  Necklacelike solitons in optically induced photonic lattices. , 2005, Physical review letters.

[45]  N. Voglis Solitons and breathers from the third integral of motion in galaxies , 2003 .

[46]  D. Christodoulides,et al.  Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. , 2003, Physical review letters.

[47]  C. Salomon,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[48]  C. R. Willis,et al.  Discrete Breathers , 1997 .

[49]  Michael I. Weinstein Excitation thresholds for nonlinear localized modes on lattices , 1999 .

[50]  A. J. Sievers,et al.  Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet , 2004, Nature.

[51]  A. A. Kolokolov,et al.  Stationary solutions of the wave equation in a medium with nonlinearity saturation , 1973 .

[52]  B. Malomed,et al.  Discrete vortex solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[54]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.