Optimality of beamforming for secrecy capacity of MIMO wiretap channels

A Gaussian multiple-input multiple-output (MIMO) wiretap channel model is considered, where there exists a transmitter, a legitimate receiver and an eavesdropper each equipped with multiple antennas. The optimality of beamforming for secrecy capacity subject to sum power constraint is studied, and two sufficient conditions for beamforming to be globally optimal are given. The first sufficient condition states that when the difference between the Gram matrices of legitimate and eavesdropper channel matrices has exactly one positive eigenvalue, then beamforming is globally optimal. An alternative sufficient condition, which involves convex optimization, is also provided. For the case in which beamforming is globally optimal, the secrecy capacity is obtained. Otherwise, an upper bound of the difference between the secrecy capacity and beamforming secrecy rate is provided.

[1]  Sennur Ulukus,et al.  Achievable Rates in Gaussian MISO Channels with Secrecy Constraints , 2007, 2007 IEEE International Symposium on Information Theory.

[2]  Athina P. Petropulu,et al.  Transmitter Optimization for Achieving Secrecy Capacity in Gaussian MIMO Wiretap Channels , 2009, ArXiv.

[3]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[4]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[5]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[6]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  A. Victor Cabot,et al.  The application of generalized benders decomposition to certain nonconcave programs , 1991 .

[9]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[10]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[11]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2008, ISIT.

[12]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[13]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[14]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[15]  Athina P. Petropulu,et al.  On beamforming solution for secrecy capacity of MIMO wiretap channels , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[16]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[17]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[18]  Shlomo Shamai,et al.  Compound wire-tap channels , 2007 .

[19]  Athina P. Petropulu,et al.  Optimal input covariance for achieving secrecy capacity in Gaussian MIMO wiretap channels , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.