A construction of small complete caps in projective spaces

In this work complete caps in PG(N, q) of size $${O(q^{\frac{N-1}{2}} \log^{300} q)}$$O(qN-12log300q) are obtained by probabilistic methods. This gives an upper bound asymptotically very close to the trivial lower bound $${\sqrt{2}q^{\frac{N-1}{2}}}$$2qN-12 and it improves the best known bound in the literature for small complete caps in projective spaces of any dimension. The result obtained in the paper also gives a new upper bound for l(m, 2, q)4, that is the minimal length n for which there exists an [n, n−m, 4]q2 covering code with given m and q.

[1]  Fernanda Pambianco,et al.  Small Complete Caps in Spaces of Even Characteristic , 1996, J. Comb. Theory, Ser. A.

[2]  Daniele Bartoli,et al.  Upper bounds on the smallest size of a complete arc in the plane PG(2,q) , 2011, ArXiv.

[3]  Stefano Marcugini,et al.  New inductive constructions of complete caps in PG(N, q), q even , 2009, 0901.0367.

[4]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[5]  Massimo Giulietti,et al.  Small complete caps in Galois affine spaces , 2007 .

[6]  Daniele Bartoli,et al.  Small Complete Caps from Singular Cubics , 2014 .

[7]  Stefano Marcugini,et al.  On sizes of complete caps in projective spaces PG(n, q) and arcs in planes PG(2, q) , 2009 .

[8]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces : update 2001 , 2001 .

[9]  Daniele Bartoli,et al.  Small complete caps from singular cubics, II , 2015 .

[10]  Daniele Bartoli,et al.  New types of estimates for the smallest size of complete arcs in a finite Desarguesian projective plane , 2015 .

[11]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[12]  András Gács,et al.  On Maximal Partial Spreads in PG(n, q) , 2003, Des. Codes Cryptogr..

[13]  S. Marcugini,et al.  New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane , 2013 .

[14]  Giuseppe Pellegrino Sulle calotte complete, non ovaloidi, dello spazioPG(3,q),q dispari , 1998 .

[15]  Massimo Giulietti,et al.  Small complete caps in PG(N, q), q even , 2007 .

[16]  S. Marcugini,et al.  New upper bounds on the smallest size of a complete cap in the space PG(3, q) , 2013 .

[17]  Endre Boros,et al.  On defining sets for projective planes , 2005, Discret. Math..

[18]  Daniele Bartoli,et al.  On sizes of complete arcs in PG(2, q) , 2010, Discret. Math..

[19]  Van H. Vu,et al.  Small Complete Arcs in Projective Planes , 2003, Comb..

[20]  Ernst M. Gabidulin,et al.  Linear codes with covering radius 2 and other new covering codes , 1991, IEEE Trans. Inf. Theory.

[21]  Daniele Bartoli,et al.  Small complete caps in three-dimensional Galois spaces , 2013, Finite Fields Their Appl..

[22]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[23]  Richard M. Wilson,et al.  Short codes with a given coveting radius , 1989, IEEE Trans. Inf. Theory.

[24]  Massimo Giulietti,et al.  Quasi-Perfect Linear Codes With Minimum Distance $4$ , 2007, IEEE Transactions on Information Theory.