Recent progress in δ-doping of III–V semiconductors grown by metal organic vapour phase epitaxy

Abstract In this article, δ-doping of III–V semiconductors (III–Vs) grown by metal organic vapour phase epitaxy (MOVPE) is reviewed in respect to the parametric dependencies of δ-doping concentrations, the spatial confinement of carriers and dopants in δ-doped layers, and applications of MOVPE-grown δ-doped structures to electronic and opto-electronic devices. The use of molecular doping precursors determines that δ-doping in MOVPE is more complicated than that in molecular beam epitaxy (MBE). A number of processes, such as the gas phase reactions of the doping precursors, adsorption and desorption of the doping species on the non-growing surface, surface reactions and reconstruction during a δ-doping step, have to be taken into account in parametric studies of the δ-doping concentration. Si δ-doping is dominated by the adsorption of the Si doping species, leading to a linear dependence of the electron density on δ-doping time. Si δ-doping concentration can be increased by increasing the growth temperature, the partial pressure of the Si doping precursor and/or decreasing the gas flow velocity. Using the optimised growth conditions, the electron density can be altered over the range 5 × 10 11 –10 13 cm −2 even at a growth temperature of 630°C. Zn δ-doping is dominated by the desorption of monatomic Zn with respect to the non-growing surface. Using the Zn δ-doping sequence (which does not have a post-δ-doping purge step), a very wide range of hole densities (10 12 −2 × 10 14 cm −2 ) can be achieved in (Al,Ga)As. The temperature and the partial pressure of the Zn doping precursor are the most effective parameters controlling Zn δ-doping concentration. Carbon δ-doping was achieved using different doping precursors, such as CCl 4 , trimethylgallium (TMGa) and trimethylaluminium (TMAl). The potential damage of CCl 4 to the environment and the common availability of TMGa and TMAl in the MOVPE reactors make the metal organic precursors more attractive to C δ-doping. The results show that TMAl is a more efficient C δ-doping precursor than TMGa. Free hole densities over the range 5 × 10 11 −3 × 10 13 cm −2 were reported using metal organic sources as the doping precursor. Well spatially-confined δ-doped layers were obtained in III–Vs grown by MOVPE. In the MOVPE-grown δ-doped III–Vs, thermal diffusion controls the spread of the dopants. Recent progress in δ-doping of III–Vs has led to fabrication of δ-doped electronic and opto-electronic devices. The capability of MOVPE to grow those novel devices is discussed with respect to the effects of the dopant profile width and concentration on the device performance. It is concluded that MOVPE is able to grow high quality n -type and p -type δ-doped layers in III–Vs though further research is required to design and fabricate device structures with strategic δ-doping for optimum performance.

[1]  J. Nijenhuis,et al.  The influence of substrate orientation and mis-orientation on the Si-doping of GaAs grown by MOVPE , 1991 .

[2]  C. A. Larsen,et al.  Si delta‐doped layers of GaAs by low pressure metalorganic vapor phase epitaxy , 1993 .

[3]  Reisinger,et al.  Electronic subbands of a delta doping layer in GaAs in a parallel magnetic field. , 1986, Physical review. B, Condensed matter.

[4]  R. Kopf,et al.  Theory and experiment of capacitance-voltage profiling on semiconductors with quantum-confinement , 1990 .

[5]  H. Hayashi,et al.  Low-noise characteristics of pulse-doped GaAs MESFETs with planar self-aligned gates , 1992 .

[6]  K. Ploog,et al.  Effect of spatial localization of dopant atoms on the spacing of electron subbands in δ-doped GaAs:Si , 1991 .

[7]  C. Phillips,et al.  Experimental and theoretical studies of a novel hetero-nipi reflection modulator , 1994 .

[8]  Yong Kim,et al.  Electric subbands in Si-delta-doped GaAs grown by metalorganic chemical vapor deposition , 1992 .

[9]  R. Stevens,et al.  Stress-induced microstructural defects in a 15% SiC aluminium alloy metal-matrix composite , 1992 .

[10]  Brian T. Cunningham,et al.  Carbon tetrachloride doped AlxGa1−xAs grown by metalorganic chemical vapor deposition , 1990 .

[11]  E. Armour,et al.  Zinc and tellurium doping in GaAs and AlxGa1−xAs grown by MOCVD , 1991 .

[12]  J. Harris,et al.  The lattice locations of silicon atoms in delta‐doped layers in GaAs , 1993 .

[13]  J. B. Stark,et al.  Diffusion of atomic silicon in gallium arsenide , 1988 .

[14]  S. Pearton,et al.  Zinc delta doping of GaAs by organometallic vapor phase epitaxy , 1989 .

[15]  A. Paola,et al.  Si delta-doped GaAs and AlGaAs by low-pressure MOVPE , 1994 .

[16]  C. K. Wang,et al.  Two‐dimensional electron gases in delta‐doped GaAs/In0.25Ga0.75As/GaAs heterostructures , 1991 .

[17]  Karl Woodbridge,et al.  Delta-doping of GaAs and Al0.33Ga0.67As with Sn, Si and Be: a comparative study , 1991 .

[18]  M. Mashita Mass Spectrometric Studies on Silicon Doping of OMYPE GaAs , 1989 .

[19]  Mártin,et al.  Modification of heterojunction band offsets by thin layers at interfaces: Role of the interface dipole. , 1990, Physical review. B, Condensed matter.

[20]  C. Jagadish,et al.  Very high carbon δ ‐doping concentration in AlxGa1−xAs grown by metalorganic vapor phase epitaxy using trimethylaluminum as a doping precursor , 1996 .

[21]  Y. Mori,et al.  Ultra-thin-channelled GaAs MESFET with double-δ-doped layers , 1988 .

[22]  M. D. Croon,et al.  Temperature dependence of silicon doping of GaAs by SiH4 and Si2H6 in atmospheric pressure metalorganic chemical vapour deposition , 1989 .

[23]  M. Shayegan,et al.  Secondary‐ion mass spectrometry study of the migration of Si in planar‐doped GaAs and Al0.25Ga0.75As , 1989 .

[24]  W. Hsu,et al.  Enhanced Two-Dimensional Electron Gas Concentrations and Mobilities in Multiple δ-DopedGaAs/In0.25Ga0.75As/GaAs Pseudomorphic Heterostructures , 1994 .

[25]  T. Makimōto,et al.  Efficient Si Planar Doping in GaAs by Flow-Rate Modulation Epitaxy , 1986 .

[26]  Negative differential resistance of a delta-doping-induced double-barrier quantum-well diode at room temperature , 1990, IEEE Electron Device Letters.

[27]  C. Jagadish,et al.  Growth of Si and C δ‐doped nipi doping superlattices in GaAs by metal organic vapor phase epitaxy , 1996 .

[28]  C. Jagadish,et al.  Zn δ-doped GaAs grown by metalorganic vapour phase epitaxy , 1995 .

[29]  J. Harris,et al.  Optical and electrical investigation of subband populations, mobilities and Fermi level pinning in delta-doped quantum wells , 1993 .

[30]  D. Grützmacher,et al.  Magnetotransport studies of δ-doping layers in MOCVD-grown InP , 1989 .

[31]  M. D. Croon,et al.  Pressure and temperature dependence of Zn incorporation in metalorganic chemical vapour deposition grown GaAs and AlGaAs using diethylzinc as precursor , 1993 .

[32]  S. Pearton,et al.  Hydrogen in carbon‐doped GaAs grown by metalorganic molecular beam epitaxy , 1990 .

[33]  J. Harris,et al.  Subband dependent mobilities and carrier saturation mechanisms in thin Si doping layers in GaAs in the high density limit , 1991 .

[34]  K. Hsieh,et al.  Passivation of carbon acceptors during growth of carbon-doped GaAs, InGaAs, and HBTs by MOCVD , 1992 .

[35]  L. F. Eastman,et al.  An analytical model for I-V and small-signal characteristics of planar-doped HEMTs , 1989 .

[36]  M. J. Kearney,et al.  Temperature dependent barrier heights in bulk unipolar diodes leading to improved temperature stable performance , 1990 .

[37]  Hong Koo Kim,et al.  Enhancement of Si-donor incorporation by Ga adatoms in Si delta-doped GaAs grown by molecular beam epitaxy , 1990 .

[38]  M. Willander,et al.  Tunneling current spectroscopy of electron subbands in n‐type δ‐doped silicon structures grown by molecular beam epitaxy , 1990 .

[39]  S. Pearton,et al.  Comparison of gallium and arsenic precursors for GaAs carbon doping by organometallic vapor phase epitaxy using CCl4 , 1992 .

[40]  J. Cunningham,et al.  Tunable stimulated emission of radiation in GaAs doping superlattices , 1989 .

[41]  K. Ploog,et al.  GaAs saw-tooth superlattice light-emitting diode operating monochromatically at λ ⩾ 0.9 μm , 1985 .

[42]  K. Ploog,et al.  Incorporation of Si in δ‐doped GaAs studied by local vibrational mode spectroscopy , 1989 .

[43]  H. Hayashi,et al.  Electronic properties of a pulse‐doped GaAs structure grown by organometallic vapor phase epitaxy , 1990 .

[44]  J. J. Liu,et al.  Optical properties of AlGaAs/GaAs nipi superlattices and their application in asymmetric cavity spatial light modulators , 1994 .

[45]  M. D. Croon,et al.  Pressure and temperature dependence of silicon doping of GaAs using Si2H6 in metalorganic chemical vapour deposition , 1992 .

[46]  Keith W. Goossen,et al.  Monolayer δ‐doped heterojunction bipolar transistor characteristics from 10 to 350 K , 1991 .

[47]  G. Scilla,et al.  The influence of hydrocarbons in MOVPE GaAs growth: Improved detection of carbon by secondary ion mass spectroscopy , 1988 .

[48]  Yong Kim,et al.  Carbon doping characteristics of GaAs and Al0.3Ga0.7As grown by atmospheric pressure metalorganic chemical vapor deposition using CCl4 , 1994 .

[49]  D. Kisker,et al.  13C isotopic labeling studies of growth mechanisms in the metalorganic vapor phase epitaxy of GaAs , 1988 .

[50]  R. H. Williams,et al.  Investigation of silicon delta‐doped gallium arsenide using the Shubnikov–de Haas effect and theoretical modeling , 1994 .

[51]  K. Yamaguchi,et al.  Zinc-doped GaAs epilayers grown by atmospheric-pressure MOCVD using diethylzinc , 1989 .

[52]  W. Hsu,et al.  Very high two-dimensional electron gas concentrations with enhanced mobilities in selectively double-δ-doped GaAs/InGaAs pseudomorphic single quantum well heterostructures , 1993 .

[53]  K. Ploog,et al.  Schottky-barrier tunneling spectroscopy for the electronic subbands of a δ-doping layer , 1986 .

[54]  N. Holonyak,et al.  Effect of annealing temperature on the hole concentration and lattice relaxation of carbon‐doped GaAs and AlxGa1−xAs , 1992 .

[55]  Y. Kim,et al.  Properties of center and edge δ‐doped GaAs‐AlGaAs quantum wells grown by metalorganic chemical vapor deposition , 1993 .

[56]  R. Kopf,et al.  Secondary‐ion mass spectrometry on δ‐doped GaAs grown by molecular beam epitaxy , 1990 .

[57]  M. Mashita Ultraviolet Light Irradiation Effects on Silicon Doping of GaAs Grown by the Triethylgallium-Arsine OMVPE Method , 1989 .

[58]  J. Hutchby,et al.  Growth and diffusion of abrupt zinc profiles in gallium arsenide and heterojunction bipolar transistor structures grown by organometallic vapor phase epitaxy , 1988 .

[59]  H. Fushimi,et al.  The presence of isolated hydrogen donors in heavily carbon-doped GaAs , 1994 .

[60]  L. Eastman,et al.  Complex free‐carrier profile synthesis by ’’atomic‐plane’’ doping of MBE GaAs , 1980 .

[61]  S. Pearton,et al.  Passivation of carbon‐doped GaAs layers by hydrogen introduced by annealing and growth ambients , 1993 .

[62]  Gottfried H. Döhler,et al.  Electronic structure of semiconductors with doping superlattices , 1983 .

[63]  P. Newman,et al.  Specific resistivity of delta‐doped contacts in n‐GaAs , 1991 .

[64]  Y. H. Lee,et al.  The negative differential resistance behavior in delta‐doped GaAs structure due to resonant interband tunneling , 1992 .

[65]  L. Eastman,et al.  GaInP/InGaAs/GaAs graded barrier MODFET grown by OMVPE: design, fabrication, and device results , 1996 .

[66]  Hitoshi Tanaka,et al.  Effective Si planar doping of GaAs by MOVPE using tertiarybutylarsine , 1991 .

[67]  G. Tränkle,et al.  Low power (bistable) opto‐electrical threshold switches with high gain based on n‐i‐p‐i doping superlattices , 1993 .

[68]  H. P. Lee,et al.  Uniform and delta doping of carbon in GaAs by solid‐source molecular beam epitaxy using electron beam evaporation: Evidence for atomic pairing , 1995 .

[69]  Y. Kim,et al.  Selenium and silicon delta‐doping properties of GaAs by atmospheric pressure metalorganic chemical vapor deposition , 1990 .

[70]  C. Jagadish,et al.  Effect of low temperature postannealing on the hole density of C δ‐doped GaAs and Al0.3Ga0.7As , 1996 .

[71]  M. Forte-Poisson,et al.  Low‐pressure metalorganic chemical vapor deposition growth and characterization of δ‐doped InP , 1989 .

[72]  K. Ploog,et al.  The δ-Doped Field-Effect Transistor , 1985 .

[73]  A. W. Nelson,et al.  A study of p-type dopants for InP grown by adduct MOVPE , 1984 .

[74]  J. Cunningham,et al.  Minimization of dopant‐induced random potential fluctuations in sawtooth doping superlattices , 1988 .

[75]  Karl Joachim Ebeling,et al.  Planar Be-doped VCSELs with high wallplug efficiencies , 1995 .

[76]  C. Jagadish,et al.  Si δ-doped Al0.3Ga0.7As/GaAs heterostructure grown by low pressure metal organic vapour phase epitaxy , 1996 .

[77]  F. Ren,et al.  Ultrahigh doping of GaAs by carbon during metalorganic molecular beam epitaxy , 1989 .

[78]  C. Jagadish,et al.  Effect of illumination on the subband electronic structure of Si δ-doped GaAs , 1997 .

[79]  Mark R. Pinto,et al.  Elimination of heterojunction band discontinuities by modulation doping , 1992 .

[80]  Yicheng Lu,et al.  Annealing effects on heavily carbon‐doped GaAs , 1992 .

[81]  P. Kiesel,et al.  High contrast electro‐optic n‐i‐p‐i doping superlattice modulator , 1993 .

[82]  D. Tennant,et al.  Investigation of carbon incorporation in GaAs using13C-enriched trimethylarsenic and13Ch4 , 1988 .

[83]  Carbon δ-Doping in GaAs by Metal-Organic Molecular Beam Epitaxy , 1993 .

[84]  T. Kuech,et al.  Carbon doping in metalorganic vapor phase epitaxy , 1994 .

[85]  C. Jagadish,et al.  Growth of Zn δ‐doped AlxGa1−xAs by low pressure metal organic vapor phase epitaxy , 1995 .

[86]  L. Keizer,et al.  Doping of gallium arsenide in MOCVD: Equilibrium calculations , 1990 .

[87]  C. Chang,et al.  Heterojunction bipolar transistors with emitter barrier lowered by /spl delta/-doping , 1994, IEEE Electron Device Letters.

[88]  H. Ohno,et al.  Planar doping by interrupted MOVPE growth of GaAs , 1984 .

[89]  A. C. Jones Metalorganic precursors for vapour phase epitaxy , 1993 .

[90]  P. Koenraad,et al.  Diamagnetic SdH effect in crossed and parallel current/magnetic field directions in Si-δ-doped GaAs , 1995 .

[91]  C. Jagadish,et al.  Confinement and concentration of electrons in Si δ-doped AlxGa1 − xAs(x = 0 and 0.35) grown by metalorganic vapour phase epitaxy , 1996 .

[92]  E. Schubert Delta doping of III–V compound semiconductors: Fundamentals and device applications , 1990 .

[93]  R. Kopf,et al.  Beryllium δ doping of GaAs grown by molecular beam epitaxy , 1990 .

[94]  J. M. Geraldo,et al.  The effect of the planar doping on the electrical transport properties at the Al:n-GaAs(100) interface : ultrahigh effective doping , 1993 .

[95]  J. Stark,et al.  Spatial localization of impurities in δ‐doped GaAs , 1988 .

[96]  G. Timp,et al.  Selectively δ‐doped AlxGa1−xAs/GaAs heterostructures with high two‐dimensional electron‐gas concentrations n2DEG≥1.5×1012 cm−2 for field‐effect transistors , 1987 .

[97]  T. Makimōto,et al.  Carbon Atomic Layer Doping in AlGaAs by Metalorganic Chemical Vapor Deposition and Its Application to a P-Type Modulation Doped Structure , 1993 .

[98]  R. Malik,et al.  A comparison of atomic carbon versus beryllium acceptor doping in GaAs grown by molecular beam epitaxy , 1991 .

[99]  B. K. Chadwick,et al.  A comparative study of selective carbon doping in MOCVD GaAs using trimethylarsenic and arsine , 1991 .

[100]  B. Meyerson,et al.  Silicon doping of GaAs and AlxGa1−xAs using disilane in metalorganic chemical vapor deposition , 1984 .

[101]  A. Ourmazd,et al.  Diffusion limited δ-doping profiles in GaAs grown by gas source molecular beam epitaxy , 1990 .

[102]  S. J. Bass Silicon and germanium doping of epitaxial gallium arsenide grown by the trimethylgallium-arsine method , 1979 .

[103]  K. Seo,et al.  δ‐doped AlGaAs and AlGaAs/InGaAs high electron mobility transistor structures grown by metalorganic chemical vapor deposition , 1992 .

[104]  V. P. Migal’,et al.  The individual subband densities and mobilities in delta -doped GaAs at different temperatures , 1993 .

[105]  K. Seo,et al.  Influence of the DX center on capacitance‐voltage profiling for Si δ ‐doped AlxGa1−xAs , 1995 .

[106]  M. Kao,et al.  Characteristics of a δ ‐doped GaAs/InGaAs p‐channel heterostructure field‐effect transistor , 1995 .

[107]  H. Lüth,et al.  Heavy carbon doping in low-pressure metalorganic vapor phase epitaxy of GaAs using trimethylarsenic — a comparison between the carrier gases N2 and H2 , 1994 .

[108]  E. Hammerl,et al.  Delta doping superlattices in silicon , 1990 .

[109]  Evan H. C. Parker,et al.  Structural and electrical properties of B delta layers in Si , 1991 .

[110]  R. Sarfaty,et al.  n‐type delta‐doped quantum well lasers with extremely low transparency current density , 1996 .

[111]  H. Reisinger,et al.  The “diamagnetic” Shubnikov-De Haas effect for multi-subband charge layers , 1986 .

[112]  S. Ghandhi,et al.  Doping of gallium arsenide in a low pressure organometallic CVD system: I. Silane , 1986 .

[113]  M. Shayegan,et al.  Effect of substrate temperature on migration of Si in planar‐doped GaAs , 1988 .

[114]  Bumman Kim,et al.  DC and RF performance of LP-MOCVD grown Al/sub 0.25/Ga/sub 0.75/As/In/sub x/Ga/sub 1-x/As (x=0.15-0.28) P-HEMT's with Si-delta doped GaAs layer , 1995 .

[115]  I. Eisele,et al.  Delta-type doping profiles in silicon , 1989 .

[116]  G. M. Ribeiro,et al.  Temperature dependence of the equilibrium Hall concentration in silicon planar-doped GaAs samples , 1996 .

[117]  Chun-Yen Chang,et al.  SILICON DELTA-DOPING OF GAINP GROWN BY LOW-PRESSURE METALORGANIC CHEMICAL-VAPOR-DEPOSITION , 1995 .

[118]  O. Oda,et al.  Delta-doped GaAs grown by chloride CVD , 1991 .

[119]  N. Pan,et al.  Si delta‐doped In0.15Ga0.85As/GaAs strained quantum well by atmospheric pressure metalorganic chemical vapor deposition , 1992 .

[120]  F. Capasso,et al.  Tunable barrier heights and band discontinuities via doping interface dipoles: An interface engineering technique and its device applications , 1985 .

[121]  W. Batty,et al.  Internal biasing by /spl delta/-doping for low-voltage, high-bandwidth quantum-well optical modulators , 1995, IEEE Photonics Technology Letters.

[122]  C. Jagadish,et al.  Study of subband electronic structure of Si δ‐doped GaAs using magnetotransport measurements in tilted magnetic fields , 1996 .

[123]  W. Hsu,et al.  SiH4-doped AlGaAs epilayers formed by MOCVD , 1992 .

[124]  K. Jang,et al.  DC and AC characteristics of AL/sub 0.25/Ga/sub 0.75/As/GaAs quantum-well delta-doped channel FET grown by LP-MOCVD , 1992, IEEE Electron Device Letters.

[125]  Gottfried H. Döhler,et al.  Electro-optical and opto-optical devices based on n-i-p-i doping superlattices , 1990 .

[126]  H. Aoki,et al.  Hydroxyapatite coating by dipping method, and bone bonding strength , 1996 .

[127]  S. Chichibu,et al.  Heavily Si‐doped GaAs grown by low‐pressure metalorganic chemical vapor deposition using tertiarybutylarsine and silane , 1992 .

[128]  C. C. Phillips,et al.  GaAs asymmetrically doped n‐i‐p‐i‐ superlattices for 10 μm infrared subband detector and modulator applications , 1994 .

[129]  G. Scilla,et al.  Acceptor doping of (Al,Ga)As using carbon by metalorganic vapor phase epitaxy , 1991 .

[130]  M. Linnarsson,et al.  Diffusion of Zn and Mg in AlGaAs/GaAs structures grown by metalorganic vapor-phase epitaxy , 1990 .

[131]  M. Shayegan,et al.  Migration of Si IN δ-doped GaAs and AlxGa1 − x As: Effect of substrate temperature , 1990 .

[132]  C. Jagadish,et al.  Growth of Zn δ-doped AlxGa1−xAs (x = 0–0.65) by low pressure metal organic vapour phase epitaxy , 1996 .

[133]  Yang Wang,et al.  Design issues of GaAs and AlGaAs delta-doped p-i-n quantum-well APD's , 1994 .

[134]  C. Jagadish,et al.  Growth of Si δ-doped GaAs by low pressure metal organic vapour phase epitaxy , 1995 .

[135]  Y. Kim,et al.  Diffusion limiting mechanism in Si-delta doped GaAs grown by metalorganic chemical vapor deposition , 1992 .

[136]  A. Kohl,et al.  Double-heterojunction lattice-matched and pseudomorphic InGaAs HEMT with delta -doped InP supply layers and p-InP barrier enhancement layer grown by LP-MOVPE , 1993, IEEE Electron Device Letters.

[137]  J. Harris,et al.  Migration of Si in δ-doped GaAs , 1988 .

[138]  S. D. Koehler,et al.  Operating characteristics of InGaAs-GaAs MQW hetero-nipi waveguide modulators , 1995, IEEE Photonics Technology Letters.

[139]  C. Jagadish,et al.  Parametric studies of Zn incorporation during δ-doping of AlxGa13-xAs grown by metal organic vapour phase epitaxy , 1996 .

[140]  J. Cunningham,et al.  Electron-mobility enhancement and electron-concentration enhancement in δ-doped n-GaAs at T=300K , 1987 .

[141]  M. Kamada,et al.  Saturation of Si atom concentration in Si planar‐doped InP layers grown by metalorganic chemical vapor deposition , 1991 .

[142]  Y. Mori,et al.  AlGaAs grown by metalorganic chemical vapor deposition for visible laser , 1981 .

[143]  C. Jagadish,et al.  Electrical activation of carbon δ-doped (Al,Ga)As grown by metalorganic vapour-phase epitaxy , 1997 .