Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information

BackgroundIn recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored.ResultsWe provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes.ConclusionsAlthough the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes.

[1]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[2]  Julio Collado-Vides,et al.  RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) , 2010, Nucleic Acids Res..

[3]  Handbook of Parametric and Nonparametric Statistical Procedures , 2004 .

[4]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[5]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[6]  Ernesto Estrada Spectral theory of networks : from biomolecular to ecological systems , 2009 .

[7]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[8]  Hans-Werner Mewes,et al.  MPact: the MIPS protein interaction resource on yeast , 2005, Nucleic Acids Res..

[9]  Frank Emmert-Streib,et al.  Inferring the conservative causal core of gene regulatory networks , 2010, BMC Systems Biology.

[10]  G. Altay,et al.  Structural influence of gene networks on their inference: analysis of C3NET. , 2011 .

[11]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[12]  Jianmin Wu,et al.  Integrated network analysis platform for protein-protein interactions , 2009, Nature Methods.

[13]  Matthias Dehmer,et al.  Structural Measures for Network Biology Using QuACN , 2011, BMC Bioinformatics.

[14]  Melissa J. Davis,et al.  Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets , 2012, Genome Medicine.

[15]  J. Lieb,et al.  ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. , 2004, Genomics.

[16]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[17]  F Emmert-Streib,et al.  Local network-based measures to assess the inferability of different regulatory networks. , 2010, IET systems biology.

[18]  Edda Klipp,et al.  Systems Biology , 1994 .

[19]  M. Dehmer,et al.  Analysis of Complex Networks: From Biology to Linguistics , 2009 .

[20]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[21]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[22]  Frank Emmert-Streib,et al.  Bagging Statistical Network Inference from Large-Scale Gene Expression Data , 2012, PloS one.

[23]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[24]  Leah Barrera,et al.  The transcriptional regulatory code of eukaryotic cells--insights from genome-wide analysis of chromatin organization and transcription factor binding. , 2006, Current opinion in cell biology.

[25]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[26]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[27]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[28]  Jianmin Wu,et al.  PINA v2.0: mining interactome modules , 2011, Nucleic Acids Res..

[29]  Hanah Margalit,et al.  Detection of regulatory circuits by integrating the cellular networks of protein-protein interactions and transcription regulation. , 2003, Nucleic acids research.

[30]  K. Zhao,et al.  ChIP-Seq: technical considerations for obtaining high-quality data , 2011, Nature Immunology.

[31]  T. Speed,et al.  GOstat: find statistically overrepresented Gene Ontologies within a group of genes. , 2004, Bioinformatics.

[32]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[33]  Bor-Sen Chen,et al.  Integrated cellular network of transcription regulations and protein-protein interactions , 2010, BMC Systems Biology.

[34]  Carsten O. Daub,et al.  Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data , 2004, BMC Bioinformatics.

[35]  Frank Emmert-Streib,et al.  Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma , 2012, BMC Systems Biology.

[36]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[37]  Mehmet Koyutürk,et al.  Network biology methods integrating biological data for translational science , 2012, Briefings Bioinform..

[38]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[39]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[40]  Galina V. Glazko,et al.  Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data , 2012, Front. Gene..

[41]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[42]  Keunwan Park,et al.  Localized network centrality and essentiality in the yeast–protein interaction network , 2009, Proteomics.

[43]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[44]  Hamid Bolouri,et al.  A data integration methodology for systems biology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Lin Chen,et al.  Combinatorial gene regulation by eukaryotic transcription factors. , 1999, Current opinion in structural biology.

[46]  G. Glazko,et al.  Network biology: a direct approach to study biological function , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[47]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[48]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[49]  R. Tsien,et al.  Specificity and Stability in Topology of Protein Networks , 2022 .

[50]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[51]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[52]  Frank Emmert-Streib,et al.  Revealing differences in gene network inference algorithms on the network level by ensemble methods , 2010, Bioinform..

[53]  M. Vidal A unifying view of 21st century systems biology , 2009, FEBS letters.

[54]  M. Daly,et al.  Guilt by association , 2000, Nature Genetics.

[55]  F Emmert-Streib,et al.  Networks for systems biology: conceptual connection of data and function. , 2011, IET systems biology.

[56]  Peter Uetz,et al.  Improving yeast two-hybrid screening systems. , 2008, Briefings in functional genomics & proteomics.

[57]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[58]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[59]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[60]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[61]  Katherine S. Pollard,et al.  The UCSC Archaeal Genome Browser , 2005, Nucleic Acids Res..

[62]  L. Aravind,et al.  Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. , 2006, Journal of molecular biology.

[63]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[64]  Peter Uetz,et al.  MPIDB: the microbial protein interaction database , 2008, Bioinform..

[65]  Atul J. Butte,et al.  Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks , 2005, BMC Bioinformatics.