Compact solid-state waveguide lasers

Glass waveguide lasers will fill an important niche as optical sources in communication, RF photonics, and optical metrology. This is primarily because waveguide lasers benefit from compact size, low noise, relatively high output powers, long upper-state lifetimes, and simple integration with optical-fiber-based systems. Although we do not expect waveguide lasers and amplifiers to ever supplant fiber and semiconductor lasers and amplifiers in every possible communications application, waveguide lasers have a number of advantages over traditional lasers for these uses. Single-frequency waveguide lasers provide narrow linewidth and high output power in a compact, monolithic package. The narrow linewidth is an important advantage over standard semiconductor lasers, and the compact size makes single-frequency waveguide lasers better suited than fiber lasers or extended-cavity semiconductor lasers for many applications.

[1]  L. Richter,et al.  Linewidth determination from self-heterodyne measurements with subcoherence delay times , 1986 .

[2]  Jun Ye,et al.  Passively mode-locked glass waveguide laser with 14-fs timing jitter. , 2003, Optics letters.

[3]  J. Schlager,et al.  Passively mode-locked waveguide laser with low residual jitter , 2002, IEEE Photonics Technology Letters.

[4]  Simon Fleming,et al.  Measurement and analysis of pump-dependent refractive index and dispersion effects in erbium-doped fiber amplifiers , 1996 .

[5]  Mark J. W. Rodwell,et al.  Subpicosecond laser timing stabilization , 1988 .

[6]  D. M. Spirit,et al.  Novel method to suppress noise in harmonically modelocked erbium fibre lasers , 1993 .

[7]  H. Ludvigsen,et al.  Laser linewidth measurements using self-homodyne detection with short delay , 1998 .

[8]  Julian Bristow Waveguide amplifiers compensate passive optical component losses , 2002 .

[9]  J. T. Kringlebotn,et al.  Efficient diode-pumped single-frequency erbium:ytterbium fiber laser , 1993, IEEE Photonics Technology Letters.

[10]  Spectral linewidth of a free-running continuous-wave single-frequency external-cavity quantum-well InGaAs / AlGaAs diode laser. , 1995, Optics letters.

[11]  M. Saruwatari,et al.  All-optical signal processing for terabit/second optical transmission , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  M. Birk,et al.  An eight-wavelength 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers , 2001, IEEE Photonics Technology Letters.

[13]  Katsumi Iwatsuki,et al.  Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth , 1990 .

[14]  Joseph S. Hayden,et al.  Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass , 2000 .

[15]  Morio Kobayashi,et al.  Guided-wave laser based on erbium-doped silica planar lightwave circuit , 1991 .

[16]  T. Tsuchiya,et al.  Factors limiting the spectral linewidth of CPM-MQW-DFB lasers , 1992, IEEE Photonics Technology Letters.

[17]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[18]  R. Adar,et al.  Er/sup 3+/ glass waveguide amplifier at 1.5 mu m on silicon , 1992 .

[19]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[20]  E. Mazur,et al.  Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. , 2001, Optics letters.

[21]  Jean-Pierre Vilcot,et al.  Preparation and characterization of sol-gel derived Er3+: Al2O3–SiO2 planar waveguides , 1997 .

[22]  Ali A. Said,et al.  Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses , 2000 .

[23]  Paul W. Juodawlkis,et al.  Ultrafast carrier dynamics and optical nonlinearities of low‐temperature‐grown InGaAs/InAlAs multiple quantum wells , 1996 .

[24]  D. W. Crust,et al.  Reduction of phase noise in passively mode-locked lasers , 1992 .

[25]  W. Rigrod Saturation Effects in High‐Gain Lasers , 1965 .

[26]  R. Scott,et al.  High-dynamic-range laser amplitude and phase noise measurement techniques , 2001 .

[27]  Jörg Hübner,et al.  Planar waveguide laser in Er/Al-doped germanosilicate , 1999 .

[28]  L. B. Mercer,et al.  1/f frequency noise effects on self-heterodyne linewidth measurements , 1990 .

[29]  Frederick J. O'Donnell,et al.  Optically sampled analog-to-digital converters , 2001 .

[30]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[31]  K. Kikuchi,et al.  Novel method for high resolution measurement of laser output spectrum , 1980 .