Approximation of Voronoï cell attributes using parallel solution

Abstract This paper concerns an algorithm for fast parallel approximation of selected attributes of hyper-dimensional Voronoi cells in a unit hypercube. The presented algorithm does not require the construction of a corresponding Voronoi diagram (usually by employing the Quick Hull algorithm) which typically is a highly computationally demanding task, especially when performed in higher dimensions. The algorithm is suitable for both the clipped and periodic variants of Voronoi tessellation and provides a significant speedup in a convenient range of practical usage. For the purposes of approximation of selected scalar properties of Voronoi cells, only the distances of points in sample are evaluated using an adequately fine underlying orthogonal mesh. The algorithm estimates e.g. the volumes and centroids of Voronoi cells, radii and coordinates of centers of the corresponding Delaunay hyper-circles. The paper also provides quite accurate explicit error estimators for the extracted attributes due to rasterization and thus the user is given a control over the accuracy by selecting an appropriate discretization density. Among numerous fields in which Voronoi diagrams are being utilized, the authors are concerned with optimization of point samples for the Design of Experiments and also with weighting of integration points in Monte Carlo type integration. In these applications, selected scalar topological descriptors of Voronoi diagrams are being repeatedly computed. As the full Voronoi diagram is not of interest but the resulting cell volumes or shape descriptions have to be repeatedly computed, the presented parallel solution seems highly suitable for these applications.

[1]  David R. Bellhouse,et al.  Area Estimation by Point-Counting Techniques: , 1981 .

[2]  Jan Masek,et al.  Parallel implementation of hyper-dimensional dynamical particle system on CUDA , 2018, Adv. Eng. Softw..

[3]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[4]  Rick L. Lawrence,et al.  Determining patch perimeters in raster image processing and geographic information systems , 1996 .

[5]  Ashton M. Shortridge Geometric variability of raster cell class assignment , 2004, Int. J. Geogr. Inf. Sci..

[6]  Yanlan Mao,et al.  Fundamental physical cellular constraints drive self‐organization of tissues , 2016, The EMBO journal.

[7]  R. Tichy,et al.  Stochastical approximation of convex bodies , 1985 .

[8]  M. Vořechovský,et al.  EVALUATION OF PAIRWISE DISTANCES AMONG POINTS FORMING A REGULAR ORTHOGONAL GRID IN A HYPERCUBE , 2018, Journal of Civil Engineering and Management.

[9]  Claire Mathieu,et al.  Scalable and architecture independent parallel geometric algorithms with high probability optimal time , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[10]  Cheol Hoon Park,et al.  A stochastic search approach for the multidimensional largest empty sphere problem , 2004 .

[11]  D. H. Maling,et al.  The Accuracy of Area Measurement by Point Counting Techniques , 1969 .

[12]  Jean-Claude Muller MAP GRIDDING AND CARTOGRAPHIC ERRORS / A RECURRENT ARGUMENT , 1977 .

[13]  Ezra Haber Glenn,et al.  The Ghost Map: The Story of London's Most Terrifying Epidemic—and How It Changed Science, Cities, and the Modern World , 2008 .

[14]  Stewart K. Kurtz,et al.  Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study , 1992 .

[15]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[16]  A. Takada Voronoi tessellation analysis of SiO2 systems based on oxygen packing , 2018, Journal of Non-Crystalline Solids.

[17]  Russ Miller,et al.  Geometric Algorithms for Digitized Pictures on a Mesh-Connected Computer , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Luc Pronzato,et al.  Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.

[19]  Zhongmin Deng,et al.  Interval identification of structural parameters using interval overlap ratio and Monte Carlo simulation , 2018, Adv. Eng. Softw..

[20]  Godfried T. Toussaint,et al.  Computing largest empty circles with location constraints , 1983, International Journal of Computer & Information Sciences.

[21]  S. Kurtz,et al.  Properties of a two-dimensional Poisson-Voronoi tesselation: A Monte-Carlo study , 1993 .

[22]  Aibing Yu,et al.  Analysis of the packing structure of wet spheres by Voronoi–Delaunay tessellation , 2007 .

[23]  Witold Brostow,et al.  Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials , 1998 .

[24]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[25]  Vicente J. Romero,et al.  Comparison of pure and "Latinized" centroidal Voronoi tessellation against various other statistical sampling methods , 2006, Reliab. Eng. Syst. Saf..

[26]  M. Vořechovský,et al.  VORONOI WEIGHTING OF SAMPLES IN MONTE CARLO INTEGRATION , 2017 .

[27]  Miroslav Vorechovský,et al.  Modification of the Audze-Eglājs criterion to achieve a uniform distribution of sampling points , 2016, Adv. Eng. Softw..

[28]  Zekai Sen Spatial Modeling Principles in Earth Sciences , 2009 .

[29]  P. Pizor Principles of Geographical Information Systems for Land Resources Assessment. , 1987 .

[30]  Wang Yajun,et al.  Constant-Work-Space Algorithms for Geometric Problems(2) , 2010 .

[31]  Dong-Ming Yan,et al.  Computing 2D Periodic Centroidal Voronoi Tessellation , 2011, 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering.

[32]  ChengHu Zhou,et al.  An equal area conversion model for rasterization of vector polygons , 2007 .

[33]  Baowei Song,et al.  Multi-surrogate-based Differential Evolution with multi-start exploration (MDEME) for computationally expensive optimization , 2018, Adv. Eng. Softw..

[34]  L. Pronzato Minimax and maximin space-filling designs: some properties and methods for construction , 2017 .

[35]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[36]  S. Yakowitz,et al.  Weighted Monte Carlo Integration , 1978 .

[37]  D. Novák,et al.  CORRELATION CONTROL IN SMALL-SAMPLE MONTE CARLO TYPE SIMULATIONS I: A SIMULATED ANNEALING APPROACH , 2009 .

[38]  Luiz F. M. Vieira,et al.  Efficient Incremental Sensor Network Deployment Algorithm , 2004 .

[39]  Michael F. Goodchild,et al.  Geometric probability and GIS: some applications for the statistics of intersections , 2002, Int. J. Geogr. Inf. Sci..

[40]  José L. F. Abascal,et al.  The Voronoi polyhedra as tools for structure determination in simple disordered systems , 1993 .

[41]  L. Meijering,et al.  INTERFACE AREA, EDGE LENGTH, AND NUMBER OF VERTICES IN CRYSTAL AGGREGATES WITH RANDOM NUCLEATION , 2014 .

[42]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[43]  A. K. BREGT,et al.  Determination of rasterizing error a case study with the soil map of The Netherlands , 1991, Int. J. Geogr. Inf. Sci..

[44]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[45]  Marcello Sega,et al.  Free volume properties of a linear soft polymer: a computer simulation study. , 2004, The Journal of chemical physics.

[46]  Johann Sienz,et al.  Formulation of the Audze-Eglais uniform Latin hypercube design of experiments for constrained design spaces , 2011, Adv. Eng. Softw..

[47]  Drahomír Novák,et al.  FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module , 2014, Adv. Eng. Softw..

[48]  David Kirk,et al.  NVIDIA cuda software and gpu parallel computing architecture , 2007, ISMM '07.

[49]  Tae Hee Lee,et al.  Efficient design optimization of complex system through an integrated interface using symbolic computation , 2018, Adv. Eng. Softw..

[50]  Matthias Reitzner,et al.  Stochastical approximation of smooth convex bodies , 2004 .

[51]  Nicholas F. Y. Chen,et al.  Quantitative shadowgraphy and proton radiography for large intensity modulations. , 2016, Physical Review E.

[52]  David Lehký,et al.  Reliability-based design: Artificial neural networks and double-loop reliability-based optimization approaches , 2017, Adv. Eng. Softw..

[53]  Dong-Ming Yan,et al.  Efficient computation of clipped Voronoi diagram for mesh generation , 2013, Comput. Aided Des..

[54]  Timothy M. Chan Semi-online maintenance of geometric optima and measures , 2002, SODA '02.

[55]  Johann Sienz,et al.  Decomposed surrogate based optimization of carbon-fiber bicycle frames using Optimum Latin Hypercubes for constrained design spaces , 2013 .

[56]  Wolfgang Graf,et al.  Computing permissible design spaces under consideration of functional responses , 2017, Adv. Eng. Softw..

[57]  Wolfgang Alt,et al.  Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics , 2009, Bulletin of mathematical biology.

[58]  Robert Buff,et al.  WEIGHTED MONTE CARLO: A NEW TECHNIQUE FOR CALIBRATING ASSET-PRICING MODELS , 2001 .

[59]  M. Goodchild Fractals and the accuracy of geographical measures , 1980 .

[60]  R. Stocki,et al.  Stochastic simulation for crashworthiness , 2004 .

[61]  D. T. Lee,et al.  Parallel geometric algorithms on a mesh-connected computer , 1987, Algorithmica.

[62]  Chris Brunsdon,et al.  Vector to Raster Conversion Error and Feature Complexity: an Empirical Study Using Simulated Data , 1994, Int. J. Geogr. Inf. Sci..

[63]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[64]  P. R. Lloyd Quantisation Error in Area Measurement , 1976 .

[65]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[66]  S. Bates,et al.  Formulation of the Audze--Eglais uniform Latin hypercube design of experiments , 2003 .