Nonconvex TVq-Models in Image Restoration: Analysis and a Trust-Region Regularization-Based Superlinearly Convergent Solver
暂无分享,去创建一个
[1] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[2] Liqun Qi,et al. A nonsmooth version of Newton's method , 1993, Math. Program..
[3] Yiqiu Dong,et al. An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..
[4] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[5] Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .
[6] Mila Nikolova,et al. Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..
[7] Rick Chartrand,et al. Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.
[8] Mila Nikolova,et al. Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization , 2008, SIAM J. Imaging Sci..
[9] Yinyu Ye,et al. A note on the complexity of Lp minimization , 2011, Math. Program..
[10] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[11] Diethard Klatte,et al. Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .
[12] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[13] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[14] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[15] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[16] Mila Nikolova,et al. Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction , 2010, IEEE Transactions on Image Processing.
[17] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[18] Wotao Yin,et al. Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[19] Mila Nikolova,et al. Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..
[20] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[21] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[22] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[23] W. Marsden. I and J , 2012 .
[24] J. J. Moré,et al. Quasi-Newton Methods, Motivation and Theory , 1974 .
[25] T. Chan,et al. On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .
[26] Rick Chartrand,et al. Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
[27] Raymond H. Chan,et al. The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration , 2007, IEEE Transactions on Image Processing.
[28] Gjlles Aubert,et al. Mathematical problems in image processing , 2001 .
[29] Xiaojun Chen,et al. Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization , 2010, SIAM J. Imaging Sci..
[30] Stephen J. Wright,et al. Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.
[31] Yiqiu Dong,et al. Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration , 2011, Journal of Mathematical Imaging and Vision.
[32] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[33] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[34] Karl Kunisch,et al. Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..
[35] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[36] M. Glas,et al. Principles of Computerized Tomographic Imaging , 2000 .
[37] Michael Hintermüller,et al. An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..
[38] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[39] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[40] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[41] B. Logan,et al. Signal recovery and the large sieve , 1992 .
[42] Frank H. Clarks. Convex Analysis and Variational Problems (Ivar Ekeland and Roger Temam) , 1978 .
[43] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[44] Yiqiu Dong,et al. A Multi-Scale Vectorial Lτ-TV Framework for Color Image Restoration , 2011, International Journal of Computer Vision.
[45] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[46] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[47] Curtis R. Vogel,et al. Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..
[48] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.