Nonconvex TVq-Models in Image Restoration: Analysis and a Trust-Region Regularization-Based Superlinearly Convergent Solver

A nonconvex variational model is introduced which contains the $\ell_q$-``norm,” $q\in (0,1)$, of the gradient of the underlying image in the regularization part together with a least squares--type data fidelity term which may depend on a possibly spatially dependent weighting parameter. Hence, the regularization term in this functional is a nonconvex compromise between the minimization of the support of the reconstruction and the classical convex total variation model. In the discrete setting, existence of a minimizer is proved, and a Newton-type solution algorithm is introduced and its global as well as local superlinear convergence toward a stationary point of a locally regularized version of the problem is established. The potential nonpositive definiteness of the Hessian of the objective during the iteration is handled by a trust-region--based regularization scheme. The performance of the new algorithm is studied by means of a series of numerical tests. For the associated infinite dimensional model a...

[1]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[2]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[3]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[6]  Mila Nikolova,et al.  Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..

[7]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[8]  Mila Nikolova,et al.  Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization , 2008, SIAM J. Imaging Sci..

[9]  Yinyu Ye,et al.  A note on the complexity of Lp minimization , 2011, Math. Program..

[10]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[11]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[12]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[13]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[14]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[15]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[16]  Mila Nikolova,et al.  Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction , 2010, IEEE Transactions on Image Processing.

[17]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[18]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[20]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[21]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[22]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[23]  W. Marsden I and J , 2012 .

[24]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[25]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[26]  Rick Chartrand,et al.  Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[27]  Raymond H. Chan,et al.  The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration , 2007, IEEE Transactions on Image Processing.

[28]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[29]  Xiaojun Chen,et al.  Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization , 2010, SIAM J. Imaging Sci..

[30]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[31]  Yiqiu Dong,et al.  Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration , 2011, Journal of Mathematical Imaging and Vision.

[32]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[33]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[34]  Karl Kunisch,et al.  Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..

[35]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[36]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[37]  Michael Hintermüller,et al.  An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..

[38]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[39]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[40]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[41]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[42]  Frank H. Clarks Convex Analysis and Variational Problems (Ivar Ekeland and Roger Temam) , 1978 .

[43]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[44]  Yiqiu Dong,et al.  A Multi-Scale Vectorial Lτ-TV Framework for Color Image Restoration , 2011, International Journal of Computer Vision.

[45]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[46]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[47]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[48]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.