Binary jumps in continuum. I. Equilibrium processes and their scaling limits
暂无分享,去创建一个
Yuri G. Kondratiev | Eugene Lytvynov | D. Finkelshtein | Y. Kondratiev | E. Lytvynov | O. Kutoviy | Dmitri L. Finkelshtein | Oleksandr V. Kutoviy
[1] M. Reed,et al. Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .
[3] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[4] Yuri G. Kondratiev,et al. Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .
[5] Time reversible and Gibbsian point processes, II. Markovian particle jump processes on a general phase space , 1982 .
[6] Diffusion approximation for equilibrium Kawasaki dynamics in continuum , 2007, math/0702178.
[7] Zhi-Ming Ma,et al. Construction of diffusions on configuration spaces , 2000 .
[8] Zhi-Ming Ma,et al. Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .
[9] Non-equilibrium stochastic dynamics in continuum: The free case , 2007, math/0701736.
[10] A support property for infinite-dimensional interacting diffusion processes , 1998, math/9801143.
[11] K. Parthasarathy. PROBABILITY MEASURES IN A METRIC SPACE , 1967 .
[12] J. Carstensen. One Component Systems , 2000 .
[13] D. Surgailis. On Poisson multiple stochastic integrals and associated equilibrium Markov processes , 1983 .
[14] V. Belavkin,et al. Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov-Feller equations , 1981 .
[15] D. Nualart,et al. Anticipative calculus for the Poisson process based on the Fock space , 1990 .
[16] J. Doob. Stochastic processes , 1953 .
[17] Dmitri Finkelshtein,et al. Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit , 2011 .
[18] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .
[19] Yuri G. Kondratiev,et al. Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.
[20] M. Röckner,et al. Infinite interacting diffusion particles I: Equilibrium process and its scaling limit , 2003, math/0311444.
[21] H. Osada. Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions , 1996 .
[22] H. Spohn. Equilibrium fluctuations for interacting Brownian particles , 1986 .
[23] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[24] Minoru W. Yoshida. Construction of infinite dimensional interacting diffusion processes through Dirichlet forms , 1996 .
[25] E. Lytvynov,et al. Equilibrium Kawasaki dynamics of continuous particle systems , 2005 .
[26] Minoru W. Yoshida,et al. On the Essential Self-Adjointness of Wick Powers of Relativistic Fields and of Fields Unitary Equivalent to Random Fields , 2004 .
[27] Yoshifusa Ito,et al. Calculus on Gaussian and Poisson white noises , 1988, Nagoya Mathematical Journal.
[28] M. Röckner,et al. Classical dirichlet forms on topological vector spaces-the construction of the associated diffusion process , 1989 .
[29] Jürgen Potthoff,et al. White Noise: An Infinite Dimensional Calculus , 1993 .
[30] SYSTEMS OF CLASSICAL PARTICLES IN THE GRAND CANONICAL ENSEMBLE, SCALING LIMITS AND QUANTUM FIELD THEORY , 2005, math-ph/0601021.
[31] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[32] I︠u︡. M. Berezanskiĭ,et al. Spectral Methods in Infinite-Dimensional Analysis , 1995 .
[33] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces: The Gibbsian Case☆ , 1998 .
[34] E. Davies,et al. One-parameter semigroups , 1980 .