Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs.

This paper reviews our knowledge of the measurement and modeling of mineral dust emissions to the atmosphere, its transport and deposition to the ocean, the release of iron from the dust into seawater, and the possible impact of that nutrient on marine biogeochemistry and climate. Of particular concern is our poor understanding of the mechanisms and quantities of dust deposition as well as the extent of iron solubilization from the dust once it enters the ocean. Model estimates of dust deposition in remote oceanic regions vary by more than a factor of 10. The fraction of the iron in dust that is available for use by marine phytoplankton is still highly uncertain. There is an urgent need for a long-term marine atmospheric surface measurement network, spread across all oceans. Because the southern ocean is characterized by large areas with high nitrate but low chlorophyll surface concentrations, that region is particularly sensitive to the input of dust and iron. Data from this region would be valuable, particularly at sites downwind from known dust source areas in South America, Australia, and South Africa. Coordinated field experiments involving both atmospheric and marine measurements are recommended to address the complex and interlinked processes and role of dust/Fe fertilization on marine biogeochemistry and climate.

[1]  John Townend,et al.  Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska , 2010 .

[2]  H. Breuning‐madsen,et al.  Harmattan dust deposition and particle size in Ghana , 2005 .

[3]  Alexander Smirnov,et al.  Comparison of size and morphological measurements of coarse mode dust particles from Africa , 2003 .

[4]  Ariel F. Stein,et al.  Does dust from Patagonia reach the sub‐Antarctic Atlantic Ocean? , 2007 .

[5]  A. Nenes,et al.  Dust and pollution: A recipe for enhanced ocean fertilization? , 2005 .

[6]  Olga V. Kalashnikova,et al.  Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals , 2008 .

[7]  R. Gordon,et al.  Northeast Pacific iron distributions in relation to phytoplankton productivity , 1988 .

[8]  J. Gower,et al.  Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: Is there a connection? , 1998 .

[9]  Edward J. Carpenter,et al.  Trichodesmium, a Globally Significant Marine Cyanobacterium , 1997 .

[10]  T. Jickells,et al.  Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review , 2012 .

[11]  T. Jickells,et al.  Atmospheric iron inputs to the oceans , 2001 .

[12]  A. Watson,et al.  Southern Ocean iron enrichment promotes inorganic carbon drawdown , 2001 .

[13]  A. Baker,et al.  Atmospheric and marine controls on aerosol iron solubility in seawater , 2010 .

[14]  K. Lindsay,et al.  Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry , 2009 .

[15]  R. Duce,et al.  Trace elements in the atmosphere over the North Atlantic , 1995 .

[16]  A. Evan,et al.  African Dust over the Northern Tropical Atlantic: 1955–2008 , 2010 .

[17]  A. Pokrovsky,et al.  Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification , 2008 .

[18]  S. Nickovic,et al.  Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling , 2012 .

[19]  Peter J. Lamb,et al.  African Droughts and Dust Transport to the Caribbean: Climate Change Implications , 2003, Science.

[20]  J. Prospero,et al.  High-Latitude Dust Over the North Atlantic: Inputs from Icelandic Proglacial Dust Storms , 2012, Science.

[21]  A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle , 2010, Proceedings of the National Academy of Sciences.

[22]  Soon-Chang Yoon,et al.  Dust cycle: An emerging core theme in Earth system science , 2011 .

[23]  Y. Kaufman,et al.  The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest , 2006 .

[24]  N. Mahowald,et al.  Atmospheric global dust cycle and iron inputs to the ocean , 2005 .

[25]  C. Thorncroft,et al.  African Monsoon Multidisciplinary Analysis: An International Research Project and Field Campaign , 2006 .

[26]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[27]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[28]  Dale A. Gillette,et al.  A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production , 1978 .

[29]  A. Schroth,et al.  Iron solubility driven by speciation in dust sources to the ocean , 2009 .

[30]  Robert G. Bryant,et al.  Ephemeral lakes and desert dust sources , 2003 .

[31]  A. Nenes,et al.  Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? , 2003 .

[32]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[33]  Robert A. Duce,et al.  Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols , 1992, Nature.

[34]  A. Baker,et al.  Iron organic speciation determination in rainwater using cathodic stripping voltammetry. , 2012, Analytica chimica acta.

[35]  Dale A. Gillette,et al.  A qualitative geophysical explanation for hot spot dust emitting source regions , 1999 .

[36]  F. Joos,et al.  Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation , 2004 .

[37]  Matthew S. Johnson,et al.  Modeling dust and soluble iron deposition to the South Atlantic Ocean , 2010 .

[38]  K. W. Nicholson The dry deposition of small particles: A review of experimental measurements , 1988 .

[39]  R. Siefert,et al.  Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds , 1993 .

[40]  Nobuo Sugimoto,et al.  Comparison of surface observations and a regional dust transport model assimilated with lidar network data in Asian dust event of March 29 to April 2, 2007 , 2011 .

[41]  F. Dulac,et al.  Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs , 2010 .

[42]  Gilles Bergametti,et al.  Submicron desert dusts: A sandblasting process , 1990 .

[43]  Roger Allan Cropp,et al.  Australian dust storms in 2002–2003 and their impact on Southern Ocean biogeochemistry , 2010 .

[44]  K. Desboeufs,et al.  Mineralogy as a critical factor of dust iron solubility , 2008 .

[45]  J. Prospero,et al.  Atmospheric transport of soil dust from Africa to South America , 1981, Nature.

[46]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[47]  V. Grassian,et al.  Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol. , 2011, The journal of physical chemistry. A.

[48]  P. Sedwick,et al.  Controls on dissolved cobalt in surface waters of the Sargasso Sea: Comparisons with iron and aluminum , 2012 .

[49]  T. Jickells,et al.  Mineral particle size as a control on aerosol iron solubility , 2006 .

[50]  P. Sedwick,et al.  Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic , 2009 .

[51]  P. Crutzen,et al.  Foreword [to special section on Indian Ocean Experiment (INDOEX)] , 2001 .

[52]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[53]  Sandy P. Harrison,et al.  Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models , 2011 .

[54]  Joseph M. Prospero,et al.  CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents , 2012 .

[55]  Olivier Aumont,et al.  Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition , 2007 .

[56]  J. Prospero,et al.  The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities , 1992 .

[57]  J. Rajot,et al.  Quantification of iron oxides in desert aerosol , 2004 .

[58]  R. Jaenicke,et al.  The processing of water vapor and aerosols by atmospheric clouds, a global estimate , 1995 .

[59]  Cyril Moulin,et al.  Understanding the long‐term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large‐scale Total Ozone Mapping Spectrometer (TOMS) optical thickness , 2005 .

[60]  Dirk Goossens,et al.  Quantification of the dry aeolian deposition of dust on horizontal surfaces: an experimental comparison of theory and measurements , 2005 .

[61]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[62]  L. Gomes,et al.  Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas , 2001 .

[63]  Ian McEwan,et al.  Wind Erosion of Crusted Soil Sediments , 1996 .

[64]  A. Lacis,et al.  Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective , 2007 .

[65]  J. Prospero,et al.  Trace elements in aerosol particles from Bermuda and Barbados: Concentrations, sources and relationships to aerosol sulfate , 1992 .

[66]  J. Prospero,et al.  Deposition of atmospheric mineral particles in the North Pacific Ocean , 1985 .

[67]  J. Rajot,et al.  Techniques to measure the dry aeolian deposition of dust in arid and semi‐arid landscapes: a comparative study in West Niger , 2008 .

[68]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[69]  S. Fan,et al.  The meteorological nature of variable soluble iron transport and deposition within the North Atlantic Ocean basin , 2011 .

[70]  A. Laskin,et al.  Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy , 2004 .

[71]  Stephanie Dutkiewicz,et al.  Atmospheric carbon dioxide in a less dusty world , 2006 .

[72]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[73]  D. Koch,et al.  Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations , 2006 .

[74]  J. Heintzenberg The SAMUM-1 experiment over Southern Morocco: overview and introduction , 2009 .

[75]  N. Mahowald,et al.  Combustion iron distribution and deposition , 2007 .

[76]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[77]  K. Linge,et al.  Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean , 2006 .

[78]  K. Schepanski,et al.  A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR‐channels , 2007 .

[79]  Matthew S. Johnson,et al.  Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean , 2010 .

[80]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[81]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[82]  Yoram J. Kaufman,et al.  Absorption of sunlight by dust as inferred from satellite and ground‐based remote sensing , 2001 .

[83]  N. Mahowald,et al.  Estimation of iron solubility from observations and a global aerosol model , 2005 .

[84]  W. Slinn,et al.  Predictions for particle deposition on natural waters , 1980 .

[85]  P. Sedwick,et al.  Fractional solubility of aerosol iron: Synthesis of a global-scale data set , 2012 .

[86]  Johannes J. Feddema,et al.  Global trends in visibility: Implications for dust sources , 2007 .

[87]  C. Prigent,et al.  Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model , 2006 .

[88]  Irina N. Sokolik,et al.  Characterization of iron oxides in mineral dust aerosols: Implications for light absorption , 2006 .

[89]  D. Lawrence,et al.  Observed 20th century desert dust variability: Impact on climate and biogeochemistry , 2010 .

[90]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[91]  Adina Paytan,et al.  Atmospheric iron deposition: global distribution, variability, and human perturbations. , 2009, Annual review of marine science.

[92]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[93]  J. Prospero Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality , 1999 .

[94]  Thomas F. Eck,et al.  A critical examination of spatial biases between MODIS and MISR aerosol products – application for potential AERONET deployment , 2011 .

[95]  M. Tonani,et al.  Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities , 2008 .

[96]  W. Slinn,et al.  Predictions for particle deposition to vegetative canopies , 1982 .

[97]  Teruyuki Nakajima,et al.  Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia , 2007 .

[98]  C. Moulin,et al.  TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979–1997) , 2002 .

[99]  T. Jickells,et al.  Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing , 2010 .

[100]  S. Milton,et al.  The development of a new dust uplift scheme in the Met Office Unified Model™ , 2009 .

[101]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[102]  Jacobo Martín,et al.  The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea , 2009 .

[103]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[104]  A. Butler,et al.  Photochemical cycling of iron in the surface ocean mediated by microbial iron(iii)-binding ligands , 2001, Nature.

[105]  Russ E. Davis,et al.  Robotic Observations of Dust Storm Enhancement of Carbon Biomass in the North Pacific , 2002, Science.

[106]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[107]  L. Bopp,et al.  Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry , 2009 .

[108]  Matthew M. Mills,et al.  Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic , 2004, Nature.

[109]  N. Meskhidze,et al.  Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. , 2009 .

[110]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[111]  Paul Ginoux,et al.  Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data , 2010 .

[112]  Zongbo Shi,et al.  Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. , 2009, Environmental science & technology.

[113]  Barry J. Huebert,et al.  Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE‐Asia , 2004 .

[114]  J. Prospero,et al.  Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados , 1997 .

[115]  K. Desboeufs,et al.  Variability of dust iron solubility in atmospheric waters: Investigation of the role of oxalate organic complexation , 2011 .

[116]  Z. Levin,et al.  The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model , 2005 .

[117]  Corinne Le Quéré,et al.  Dust impact on marine biota and atmospheric CO2 in glacial periods , 2003 .

[118]  K. White,et al.  Dust production and the release of iron oxides resulting from the aeolian abrasion of natural dune sands , 2005 .

[119]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[120]  T. Jickells,et al.  Global dust teleconnections: aerosol iron solubility and stable isotope composition , 2007 .

[121]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[122]  D. Harbour,et al.  Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean , 2003 .

[123]  J. Prospero,et al.  Marine biogenic and anthropogenic contributions to non‐sea‐salt sulfate in the marine boundary layer over the North Atlantic Ocean , 2002 .

[124]  David M. Cwiertny,et al.  Characterization and acid‐mobilization study of iron‐containing mineral dust source materials , 2008 .

[125]  N. Mahowald,et al.  Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts , 2008 .

[126]  A. Johansen,et al.  Dissolution of aerosol-derived iron in seawater: Leach solution chemistry, aerosol type, and colloidal iron fraction , 2010 .

[127]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[128]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[129]  N. Mahowald,et al.  Impacts of atmospheric nutrient inputs on marine biogeochemistry , 2010 .

[130]  Ashwini Kumar,et al.  Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea , 2012, Biogeochemistry.

[131]  V. Ramaswamy,et al.  Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output , 2009 .

[132]  H. Breuning‐madsen,et al.  Sediment and nutrient deposition in Lake Volta in Ghana due to Harmattan dust , 2012 .

[133]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[134]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[135]  B. Hicks,et al.  A review of the current status of knowledge on dry deposition , 2000 .

[136]  R. Larsen,et al.  Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island) , 1993 .

[137]  A. Johansen,et al.  Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals , 1999 .

[138]  N. Mahowald,et al.  Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications , 2004 .

[139]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[140]  R. Losno,et al.  Factors influencing aerosol solubility during cloud processes , 2001 .

[141]  Nobuo Sugimoto,et al.  Dust model intercomparison (DMIP) study over Asia: Overview , 2006 .

[142]  D. Blake,et al.  Characterization Experiment (ACE 1) Lagrangian B 1. A moving column approach , 1998 .

[143]  C. Heald,et al.  North African dust export and deposition: A satellite and model perspective , 2012 .

[144]  J. Randerson,et al.  Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model , 2010 .

[145]  M. Kanakidou,et al.  Diurnal and seasonal variation of atmospheric dimethylsulfoxide at Amsterdam Island in the southern Indian Ocean , 2000 .

[146]  R. Duce,et al.  Dry deposition of Asian mineral dust over the central North Pacific , 1990 .

[147]  B. Hicks,et al.  The atmospheric input of trace species to the world ocean , 1991 .

[148]  N. Mihalopoulos,et al.  Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio , 2010 .

[149]  Ramesh P. Singh,et al.  Enhancement of oceanic parameters associated with dust storms using satellite data , 2008 .

[150]  Chunsheng Zhao,et al.  Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions , 2010 .

[151]  D. Canfield,et al.  The Iron Biogeochemical Cycle Past and Present , 2012 .

[152]  P. Boyd,et al.  Soil abrasion and eolian dust production: Implications for iron partitioning and solubility , 2006 .

[153]  A. Laskin,et al.  Coal fly ash as a source of iron in atmospheric dust. , 2012, Environmental science & technology.

[154]  M. Schulz,et al.  African dust deposition to Florida: Temporal and spatial variability and comparisons to models , 2010 .

[155]  J. Ogren,et al.  Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[156]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[157]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[158]  S. Fan,et al.  Aeolian input of bioavailable iron to the ocean , 2006 .

[159]  Vicki H. Grassian,et al.  Interactions between Mineral Dust, Climate, and Ocean Ecosystems , 2010 .

[160]  P. Sedwick,et al.  Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea , 2007 .

[161]  J. Reid,et al.  Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis , 2003 .

[162]  Young-Joon Kim,et al.  An overview of ACE‐Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts , 2003 .

[163]  Jianglong Zhang,et al.  Evaluating the impact of assimilating CALIOP‐derived aerosol extinction profiles on a global mass transport model , 2011 .

[164]  L. Bopp,et al.  What does temporal variability in aeolian dust deposition contribute to sea‐surface iron and chlorophyll distributions? , 2008 .

[165]  Jianping Huang,et al.  Top‐down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS‐Chem adjoint model , 2012 .

[166]  Yaping Shao,et al.  Simplification of a dust emission scheme and comparison with data , 2004 .

[167]  C. Usher,et al.  Reactions on mineral dust. , 2003, Chemical reviews.

[168]  Bernard Aumont,et al.  Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources , 1997 .