Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site

(2014). Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nature Communications, 5, 3900. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library:

[1]  Orianna Bretschger,et al.  Microbial population and functional dynamics associated with surface potential and carbon metabolism , 2013, The ISME Journal.

[2]  J. G. Kuenen,et al.  Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem , 2013, Proceedings of the National Academy of Sciences.

[3]  H. Dahle,et al.  Microbial life associated with low‐temperature alteration of ultramafic rocks in the Leka ophiolite complex , 2013, Geobiology.

[4]  Niels W. Hanson,et al.  Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean , 2013, Proceedings of the National Academy of Sciences.

[5]  A. Veríssimo,et al.  Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. , 2013, Environmental microbiology.

[6]  Andrew Steele,et al.  Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue , 2013 .

[7]  J. G. Kuenen,et al.  Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars , 2013 .

[8]  T. A. Krulwich,et al.  The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4 , 2013, Proceedings of the National Academy of Sciences.

[9]  William J. Brazelton,et al.  Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs , 2013, Applied and Environmental Microbiology.

[10]  J. Lloyd,et al.  Microbial Reduction of Fe(III) under Alkaline Conditions Relevant to Geological Disposal , 2013, Applied and Environmental Microbiology.

[11]  Kenneth H. Nealson,et al.  A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer , 2013, Nature Communications.

[12]  T. H. Chew,et al.  Genome Sequence of Hydrogenophaga sp. Strain PBC, a 4-Aminobenzenesulfonate-Degrading Bacterium , 2012, Journal of bacteriology.

[13]  H. Dahle,et al.  Low temperature alteration of serpentinized ultramafic rock and implications for microbial life , 2012 .

[14]  W. Brazelton,et al.  Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities , 2012, Front. Microbio..

[15]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[16]  Ilmo T. Kukkonen,et al.  Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. , 2011, FEMS microbiology ecology.

[17]  George Sachs,et al.  Molecular aspects of bacterial pH sensing and homeostasis , 2011, Nature Reviews Microbiology.

[18]  T. Kieft,et al.  Capture of Planktonic Microbial Diversity in Fractures by Long-Term Monitoring of Flowing Boreholes, Evander Basin, South Africa , 2011 .

[19]  Makoto Fujisawa,et al.  F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. , 2010, Biochimica et biophysica acta.

[20]  Yohey Suzuki,et al.  Geomicrobiological Properties of Ultra-Deep Granitic Groundwater from the Mizunami Underground Research Laboratory (MIU), Central Japan , 2010, Microbial Ecology.

[21]  Luis M. Rocha,et al.  Origins of high pH mineral waters from ultramafic rocks, Central Portugal , 2008 .

[22]  Yuji Nagata,et al.  GenomeMatcher: A graphical user interface for DNA sequence comparison , 2008, BMC Bioinformatics.

[23]  P. Peltonen,et al.  Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu–Co–Zn–Ni–Ag–Au sulphide deposits , 2008 .

[24]  Michael Y. Galperin,et al.  Evolutionary primacy of sodium bioenergetics , 2008, Biology Direct.

[25]  V. Kunin,et al.  CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea , 2008, Nature Reviews Microbiology.

[26]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[27]  B. Frost,et al.  On Silica Activity and Serpentinization , 2007 .

[28]  Hakan Hosgörmez,et al.  Origin of the natural gas seep of Çirali (Chimera), Turkey: Site of the first Olympic fire , 2007 .

[29]  G. King,et al.  Distribution, diversity and ecology of aerobic CO-oxidizing bacteria , 2007, Nature Reviews Microbiology.

[30]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[31]  J. Baross,et al.  Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem , 2006, Applied and Environmental Microbiology.

[32]  R. Sanford,et al.  Extremely Alkaline (pH > 12) Ground Water Hosts Diverse Microbial Community , 2006, Ground water.

[33]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[34]  D. Sorokin Is there a limit for high-pH life? , 2005, International journal of systematic and evolutionary microbiology.

[35]  S. Spring,et al.  Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. , 2005, International journal of systematic and evolutionary microbiology.

[36]  K. Nealson,et al.  Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc , 2005, Extremophiles.

[37]  J. Baross,et al.  Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. , 2004, Environmental microbiology.

[38]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Vignais,et al.  Molecular biology of microbial hydrogenases. , 2004, Current issues in molecular biology.

[40]  Luigi Marini,et al.  Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers , 2004 .

[41]  M. Ishii,et al.  A novel enzyme, citryl‐CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK‐6 , 2004, Molecular microbiology.

[42]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[43]  S. Ragsdale Life with Carbon Monoxide , 2004, Critical reviews in biochemistry and molecular biology.

[44]  M. Mottl,et al.  Deep‐slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195 , 2003 .

[45]  Catherine L Drennan,et al.  A Ni-Fe-Cu Center in a Bifunctional Carbon Monoxide Dehydrogenase/ Acetyl-CoA Synthase , 2002, Science.

[46]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[47]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[48]  S. Fujimoto,et al.  Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism , 1995, Journal of bacteriology.

[49]  H. Fukuzawa,et al.  A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Böhlke,et al.  Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines , 1990 .

[51]  H. Berg,et al.  The MotA protein of E. coli is a proton-conducting component of the flagellar motor , 1990, Cell.

[52]  Y. Imae,et al.  Na+-driven bacterial flagellar motors , 1989, Journal of bioenergetics and biomembranes.

[53]  Takayuki Ezaki,et al.  Fluorometric Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization in Microdilution Wells as an Alternative to Membrane Filter Hybridization in which Radioisotopes Are Used To Determine Genetic Relatedness among Bacterial Strains , 1989 .

[54]  A. Willems,et al.  Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and Pseudomonas carboxydoflava), and Hydrog , 1989 .

[55]  J. Sanders,et al.  The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. , 1989, The Journal of biological chemistry.

[56]  D. Lovley,et al.  Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River , 1986, Applied and environmental microbiology.

[57]  Y. Igarashi,et al.  The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus , 1985, Archives of Microbiology.

[58]  V. Lamarche,et al.  Geochemical Evidence of Present-Day Serpentinization , 1967, Science.

[59]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.

[60]  P. Fryer Serpentinite mud volcanism: observations, processes, and implications. , 2012, Annual review of marine science.

[61]  H. G. Trüper,et al.  Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.

[62]  M. Lilley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. , 2001, Nature.

[63]  A. Nicolas,et al.  Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program , 2000 .

[64]  W. Meijer,et al.  Something from almost nothing: carbon dioxide fixation in chemoautotrophs. , 1998, Annual review of microbiology.

[65]  J. R. O'neil,et al.  Present day serpentinization in New Caledonia, Oman and Yugoslavia , 1978 .