Complexity of Inference in Graphical Models

It is well-known that inference in graphical models is hard in the worst case, but tractable for models with bounded treewidth. We ask whether treewidth is the only structural criterion of the underlying graph that enables tractable inference. In other words, is there some class of structures with unbounded treewidth in which inference is tractable? Subject to a combinatorial hypothesis due to Robertson et al. (1994), we show that low treewidth is indeed the only structural restriction that can ensure tractability. Thus, even for the "best case" graph structure, there is no inference algorithm with complexity polynomial in the treewidth.

[1]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[2]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[3]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[4]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[5]  Michael Chertkov,et al.  Loop series for discrete statistical models on graphs , 2006, ArXiv.

[6]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[7]  Dan Geiger,et al.  A sufficiently fast algorithm for finding close to optimal clique trees , 2001, Artif. Intell..

[8]  Michael I. Jordan Graphical Models , 2003 .

[9]  John W. Fisher,et al.  Loopy Belief Propagation: Convergence and Effects of Message Errors , 2005, J. Mach. Learn. Res..

[10]  C. R. Subramanian,et al.  A spectral lower bound for the treewidth of a graph and its consequences , 2003, Inf. Process. Lett..

[11]  Larry Stockmeyer,et al.  Planar 3-colorability is polynomial complete , 1973, SIGA.

[12]  Richard Szeliski,et al.  Bayesian modeling of uncertainty in low-level vision , 2011, International Journal of Computer Vision.

[13]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[14]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..

[15]  D DemaineErik,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005 .

[16]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[17]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[18]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[19]  John Paxton,et al.  Republic of China , 1978 .

[20]  Dániel Marx Can you beat treewidth? , 2007, FOCS.

[21]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[22]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[23]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[24]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[25]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[26]  Ken-ichi Kawarabayashi,et al.  Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner’s Contraction , 2009, Algorithmica.

[27]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[28]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[29]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[30]  Ioannis G. Tollis,et al.  Planar grid embedding in linear time , 1989 .

[31]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[32]  Tony Jebara,et al.  MAP Estimation, Message Passing, and Perfect Graphs , 2009, UAI.

[33]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[34]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[35]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[36]  Dániel Marx,et al.  On the Optimality of Planar and Geometric Approximation Schemes , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[37]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[38]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, ISA.