Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF)

[1]  M. Hultén Selective Somatic Pairing and Fragility at 1q12 in a Boy with Common Variable Immuno Deficiency , 2008 .

[2]  A. Tomaszewska,et al.  [Chromosome instability syndromes]. , 2006, Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego.

[3]  D. Gisselsson,et al.  Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells , 2005, Chromosoma.

[4]  A. Mégarbané,et al.  DNMT3B mutations and DNA methylation defect define two types of ICF syndrome , 2005, Human mutation.

[5]  A. Guala,et al.  Variability of clinical and immunological phenotype in immunodeficiency-centromeric instability-facial anomalies syndrome , 1995, European Journal of Pediatrics.

[6]  A. Mégarbané,et al.  Subcellular distribution of HP1 proteins is altered in ICF syndrome , 2005, European Journal of Human Genetics.

[7]  Y. Goto,et al.  ICF syndrome in a girl with DNA hypomethylation but without detectable DNMT3B mutation , 2004, American journal of medical genetics. Part A.

[8]  Peter W. Laird,et al.  DNA Hypomethylation and Ovarian Cancer Biology , 2004, Cancer Research.

[9]  M. Milili,et al.  Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. , 2004, Blood.

[10]  C. Serrati,et al.  Progressive multifocal leukoencephalopathy in an adult patient with ICF syndrome , 2004, Journal of the Neurological Sciences.

[11]  T. Meitinger,et al.  DNA, FISH and complementation studies in ICF syndrome: DNA hypomethylation of repetitive and single copy loci and evidence for a trans acting factor , 1995, Human Genetics.

[12]  A. T. Sumner,et al.  ICF syndrome (immunodeficiency, centromeric instability and facial anomalies): investigation of heterochromatin abnormalities and review of clinical outcome , 1995, Human Genetics.

[13]  D. Smeets,et al.  ICF syndrome: a new case and review of the literature , 1994, Human Genetics.

[14]  B. Dutrillaux,et al.  Hypomethylation of classical satellite DNA and chromosome instability in lymphoblastoid cell lines , 1993, Human Genetics.

[15]  J. Groden,et al.  Bloom's syndrome , 1992, Human Genetics.

[16]  C. Romano,et al.  Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency , 1979, Human Genetics.

[17]  J. Fryns,et al.  Centromeric instability of chromosomes 1, 9, and 16 associated with combined immunodeficiency , 2004, Human Genetics.

[18]  J. German,et al.  Bloom's syndrome. III. Analysis of the chromosome aberration characteristic of this disorder , 2004, Chromosoma.

[19]  G. V. Ommen,et al.  Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy , 2003, Nature Genetics.

[20]  M. Ehrlich The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. , 2003, Clinical immunology.

[21]  J. Ausió,et al.  Syndromes of disordered chromatin remodeling , 2003, Clinical genetics.

[22]  S. Hirohashi,et al.  Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. , 2003, Cancer letters.

[23]  P. Laird,et al.  Prolonged culture of normal chorionic villus cells yields ICF syndrome-like chromatin decondensation and rearrangements , 2003, Cytogenetic and Genome Research.

[24]  P. Laird,et al.  Hypomethylation and hypermethylation of DNA in Wilms tumors , 2002, Oncogene.

[25]  Y. Fukushima,et al.  Three novel DNMT3B mutations in Japanese patients with ICF syndrome. , 2002, American journal of medical genetics.

[26]  Q. Tao,et al.  Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells. , 2002, Human molecular genetics.

[27]  M. Ehrlich,et al.  DNA methylation in cancer: too much, but also too little , 2002, Oncogene.

[28]  R. Roberts,et al.  Co‐operation and communication between the human maintenance and de novo DNA (cytosine‐5) methyltransferases , 2002, The EMBO journal.

[29]  Albert Jeltsch,et al.  Molecular Enzymology of the Catalytic Domains of the Dnmt3a and Dnmt3b DNA Methyltransferases* 210 , 2002, The Journal of Biological Chemistry.

[30]  J. Chung,et al.  Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. , 2001, Biochemical and biophysical research communications.

[31]  M. Ehrlich,et al.  High frequencies of ICF syndrome-like pericentromeric heterochromatin decondensation and breakage in chromosome 1 in a chorionic villus sample , 2001, Journal of medical genetics.

[32]  David E. Misek,et al.  DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. , 2001, Human molecular genetics.

[33]  N. Hopkins,et al.  Methylation of the FSHD syndrome-linked subtelomeric repeat in normal and FSHD cell cultures and tissues. , 2001, Molecular genetics and metabolism.

[34]  W. Bickmore,et al.  Human diseases with underlying defects in chromatin structure and modification. , 2001, Human molecular genetics.

[35]  A. Taylor,et al.  Chromosome instability syndromes. , 2001, Best practice & research. Clinical haematology.

[36]  S. Baylin,et al.  Dnmt3a and Dnmt3b Are Transcriptional Repressors That Exhibit Unique Localization Properties to Heterochromatin* , 2001, The Journal of Biological Chemistry.

[37]  G. Gimelli,et al.  T-cell apoptosis in ICF syndrome. , 2001, The Journal of allergy and clinical immunology.

[38]  N. Dillon,et al.  Binding of Ikaros to the λ5 promoter silences transcription through a mechanism that does not require heterochromatin formation , 2001, The EMBO journal.

[39]  T. de Ravel,et al.  The ICF syndrome: new case and update. , 2001, Genetic counseling.

[40]  S. Matsuura [Nijmegen breakage syndrome]. , 2001, Ryoikibetsu shokogun shirizu.

[41]  C. Wijmenga,et al.  Genetic variation in ICF syndrome: Evidence for genetic heterogeneity , 2000, Human mutation.

[42]  M. Ehrlich,et al.  Hypersensitivity to radiation-induced non-apoptotic and apoptotic death in cell lines from patients with the ICF chromosome instability syndrome. , 2000, Mutation research.

[43]  C. Wijmenga,et al.  Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. , 2000, Human molecular genetics.

[44]  A. Niveleau,et al.  DNA methylation and chromosome instability in lymphoblastoid cell lines , 2000, Cytogenetic and Genome Research.

[45]  C. Wijmenga,et al.  Early prenatal diagnosis of the ICF syndrome , 2000, Prenatal diagnosis.

[46]  M. Ehrlich,et al.  DNA hypomethylation and unusual chromosome instability in cell lines fromICF syndrome patients , 2000, Cytogenetic and Genome Research.

[47]  D. Higgs,et al.  Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation , 2000, Nature Genetics.

[48]  R. Kuick,et al.  Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. , 2000, Human molecular genetics.

[49]  C. Wijmenga,et al.  The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  E. Li,et al.  Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2–A3 and 2H1 by in situ hybridization , 1999, Cytogenetic and Genome Research.

[51]  N. Tommerup,et al.  Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene , 1999, Nature.

[52]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[53]  D. Haber,et al.  DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development , 1999, Cell.

[54]  D. Bourc’his,et al.  Abnormal methylation does not prevent X inactivation in ICF patients , 1999, Cytogenetic and Genome Research.

[55]  A. Fisher,et al.  Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. , 1999, Molecular cell.

[56]  C. Wijmenga,et al.  Localization of the ICF syndrome to chromosome 20 by homozygosity mapping. , 1998, American journal of human genetics.

[57]  V. Yamazaki,et al.  Characterization of cell cycle checkpoint responses after ionizing radiation in Nijmegen breakage syndrome cells. , 1998, Cancer research.

[58]  M. Ehrlich,et al.  DNA demethylation and pericentromeric rearrangements of chromosome 1. , 1997, Mutation research.

[59]  D. Bourc’his,et al.  α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues , 1997, Human Genetics.

[60]  Y. Shiloh,et al.  Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. , 1997, Annual review of genetics.

[61]  M. Ehrlich,et al.  Preferential induction of chromosome 1 multibranched figures and whole-arm deletions in a human pro-B cell line treated with 5-azacytidine or 5-azadeoxycytidine. , 1997, Cytogenetics and cell genetics.

[62]  M. Meyn Chromosome instability syndromes: lessons for carcinogenesis. , 1997, Current topics in microbiology and immunology.

[63]  A. Taylor,et al.  Leukemia and lymphoma in ataxia telangiectasia. , 1996, Blood.

[64]  M. Stacey,et al.  FISH analysis on spontaneously arising micronuclei in the ICF syndrome. , 1995, Journal of medical genetics.

[65]  J. Sawyer,et al.  Chromosome instability in ICF syndrome: formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization. , 1995, American journal of medical genetics.

[66]  A. Niveleau,et al.  Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. , 1994, Human molecular genetics.

[67]  M. Jeanpierre Human satellites 2 and 3. , 1994, Annales de genetique.

[68]  F. Ledeist,et al.  An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. , 1993, Human molecular genetics.

[69]  G. Gimelli,et al.  ICF syndrome with variable expression in sibs. , 1993, Journal of medical genetics.

[70]  C. Fuster,et al.  Spontaneous chromosome fragility in chorionic villus cells. , 1991, Early human development.

[71]  T. Nicotera Molecular and biochemical aspects of Bloom's syndrome. , 1991, Cancer genetics and cytogenetics.

[72]  D. Smeets,et al.  Immunological studies in Bloom's syndrome. A follow-up report. , 1991, Annales de genetique.

[73]  G. Holmgren,et al.  Fragility of the Centromeric Region of Chromosome 1 Associated with Combined Immunodeficiency in Siblings A Recessively Inherited Entity? , 1990, Acta paediatrica Scandinavica.

[74]  F. Ledeist,et al.  Multibranched chromosomes in the ICF syndrome: immunodeficiency, centromeric instability, and facial anomalies. , 1989, American journal of medical genetics.

[75]  R. Blaese,et al.  Variable immunodeficiency with abnormal condensation of the heterochromatin of chromosomes 1, 9, and 16. , 1988, The Journal of pediatrics.

[76]  O. Zuffardi,et al.  Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. , 1988, Journal of medical genetics.

[77]  R. Moses,et al.  Diseases with DNA damage-processing defects. , 1988, The American journal of the medical sciences.

[78]  G. Vălkova,et al.  Centromeric instability of chromosomes 1, 9 and 16 with variable immune deficiency. Support of a new syndrome , 1987, Clinical genetics.

[79]  F. Harris,et al.  Centromeric instability of chromosomes 1 and 16 with variable immune deficiency: a new syndrome , 1985, Clinical genetics.