JLip versus Sobolev spaces on a class of self-similar fractal foliages

[1]  Yves Achdou,et al.  Comparison of Different Definitions of Traces for a Class of Ramified Domains with Self-Similar Fractal Boundaries , 2013, Potential Analysis.

[2]  Yves Achdou,et al.  Trace Theorems for a Class of Ramified Domains with Self-Similar Fractal Boundaries , 2010, SIAM J. Math. Anal..

[3]  Maria Rosaria,et al.  Second Order Transmission Problems Across a Fractal Surface ( * * ) , 2010 .

[4]  Variational Problems with Fractal Layers ( * * ) , 2010 .

[5]  Yves Achdou,et al.  Trace results on domains with self-similar fractal boundaries , 2008 .

[6]  Yves Achdou,et al.  Neumann conditions on fractal boundaries , 2007, Asymptot. Anal..

[7]  Alf Jonsson,et al.  Haar wavelets of higher order on fractals and regularity of functions , 2004 .

[8]  Robert S. Strichartz,et al.  Function spaces on fractals , 2003 .

[9]  Umberto Mosco,et al.  Energy Functionals on Certain Fractal Structures , 2003 .

[10]  Maria Rosaria Lancia,et al.  A Transmission Problem with a Fractal Interface , 2002 .

[11]  J. Kigami,et al.  Analysis on Fractals , 2001 .

[12]  Jun Kigami,et al.  Analysis on Fractals: Index , 2001 .

[13]  Günter Berger,et al.  Eigenvalue Distribution of Elliptic Operators of Second Order with Neumann Boundary Conditions in a Snowflake Domain , 2000 .

[14]  Michael Frame,et al.  The Canopy and Shortest Path in a Self-Contacting Fractal Tree , 1999 .

[15]  R. Strichartz ANALYSIS ON FRACTALS , 1999 .

[16]  Alf Jonsson,et al.  Wavelets on fractals and besov spaces , 1998 .

[17]  H. Triebel Fractals and spectra , 1997 .

[18]  K. Falconer Techniques in fractal geometry , 1997 .

[19]  Hans Wallin,et al.  The dual of Besov spaces on fractals , 1995 .

[20]  K. Falconer The geometry of fractal sets , 1985 .

[21]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[22]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[23]  P. A. P. Moran,et al.  Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.