Recursive definition of global cellular-automata mappings.

A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set of fixed points of cellular automata on an infinite lattice.

[1]  Erica Jen,et al.  Cylindrical cellular automata , 1988 .

[2]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[3]  Mats G. Nordahl,et al.  Formal Languages and Finite Cellular Automata , 1989, Complex Syst..

[4]  H. Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1991 .

[5]  B. Liu,et al.  [Effect of BN52021 on platelet activating factor induced aggregation of psoriatic polymorphonuclear neutrophils]. , 1994, Zhonghua yi xue za zhi.

[6]  G. S. Martin Dissipation , 1904, The American journal of dental science.

[7]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[8]  Wentian Li,et al.  The Structure of the Elementary Cellular Automata Rule Space , 1990, Complex Syst..

[9]  Louise K. Comfort,et al.  Self-Organization in Complex Systems , 1994 .

[10]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[11]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[12]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[13]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[14]  Erica Jen,et al.  Exact solvability and quasiperiodicity of one-dimensional cellular automata , 1991 .

[15]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[16]  Gary D. Doolen Lattice Gas Methods For Partial Differential Equations , 1990 .

[17]  Angelo Vulpiani,et al.  Chaotic Dynamical Systems , 1993 .

[18]  Daniel L. Stein,et al.  Lectures In The Sciences Of Complexity , 1989 .

[19]  Mark A. Satterthwaite,et al.  The Bayesian theory of the k-double auction: Santa Fe Institute Studies in the Sciences of Complexity , 2018 .