Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source

The KArlsruhe TRItium Neutrino (KATRIN) experiment will measure the absolute mass scale of neutrinos with a sensitivity of m??=?200?meV/c2 by high-precision spectroscopy close to the tritium ?-decay endpoint at 18.6?keV. Its Windowless Gaseous Tritium Source (WGTS) is a ?-decay source of high intensity (1011?s?1) and stability, where high-purity molecular tritium at 30?K is circulated in a closed loop with a yearly throughput of 10?kg. To limit systematic effects the column density of the source has to be stabilized at the 10?3 level. This requires extensive sensor instrumentation and dedicated control and monitoring systems for parameters such as the beam tube temperature, injection pressure, gas composition and so on. In this paper, we give an overview of these systems including a dedicated laser-Raman system as well as several ?-decay activity monitors. We also report on the results of the WGTS demonstrator and other large-scale test experiments giving proof-of-principle that all parameters relevant to the systematics can be controlled and monitored on the 10?3 level or better. As a result of these works, the WGTS systematics can be controlled within stringent margins, enabling the KATRIN experiment to explore the neutrino mass scale with the design sensitivity.

[1]  Christopher T. Chantler,et al.  Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV , 1995 .

[2]  C. Kraus,et al.  Final results from phase II of the Mainz neutrino mass searchin tritium ${\beta}$ decay , 2004, hep-ex/0412056.

[3]  Pieter Kruit,et al.  Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier , 1983 .

[4]  Richard J. Lewis,et al.  Design Implications for Laser Raman Measurement Systems for Tritium Sample-Analysis, Accountancy or Process-Control Applications , 2011 .

[5]  F. Sharipov Rarefied gas flow through a long tube at arbitrary pressure and temperature drops , 1997 .

[6]  Derek A. Long,et al.  The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules , 2001 .

[7]  E. Otten,et al.  Neutrino mass limit from tritium β decay , 2008, 0909.2104.

[8]  F. Sharipov Numerical simulation of rarefied gas flow through a thin orifice , 2004, Journal of Fluid Mechanics.

[9]  Robert J. Le Roy,et al.  Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen , 1987 .

[10]  Beate Bornschein,et al.  Monitoring of all hydrogen isotopologues at tritium laboratory Karlsruhe using Raman spectroscopy , 2010 .

[11]  R. Wunstorf Radiation hardness of silicon detectors: current status , 1997 .

[12]  Timothy M James,et al.  Automated Quantitative Spectroscopic Analysis Combining Background Subtraction, Cosmic Ray Removal, and Peak Fitting , 2013, Applied spectroscopy.

[13]  S. Lukic,et al.  A broad-band FT-ICR Penning trap system for KATRIN , 2009, 0907.3458.

[14]  F. Sharipov,et al.  Flows of rarefied gaseous mixtures with a low mole fraction. Separation phenomenon , 2011 .

[15]  B. Bornschein,et al.  Energy loss of 18 keV electrons in gaseous T and quench condensed D films , 2000 .

[16]  M. Nishi,et al.  Monitoring of tritium in diluted gases by detecting bremsstrahlung X-rays , 2006 .

[17]  Derek A. Long,et al.  The Raman Effect , 2002 .

[18]  U. Besserer,et al.  The Closed Tritium Cycle of the Tritium Laboratory Karlsruhe , 2005 .

[19]  M. Süsser,et al.  Precise temperature measurement at 30 K in the KATRIN source cryostat , 2011 .

[20]  G. Drexlin,et al.  Monitoring of Tritium Purity During Long-Term Circulation in the KATRIN Test Experiment LOOPINO Using Laser Raman Spectroscopy , 2011, 1208.1605.

[21]  J. R. Pierce,et al.  Scientific foundations of vacuum technique , 1949 .

[22]  Irina Graur,et al.  Gas flow through an elliptical tube over the whole range of the gas rarefaction , 2008 .

[23]  J. Bonn,et al.  Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment , 2010, 1011.6365.

[24]  B. Stern,et al.  Direct search for mass of neutrino and anomaly in the tritium beta-spectrum , 1999 .

[25]  P. Cassette,et al.  Radionuclide metrology using liquid scintillation counting , 2007 .

[26]  B. Bornschein Determination of Neutrino Mass from Tritium Beta Decay , 2008 .

[27]  Magnus Schlösser,et al.  Accurate depolarization ratio measurements for all diatomic hydrogen isotopologues , 2013 .

[28]  Beate Bornschein,et al.  Calibrating a gas chromatograph to measure tritium using calorimetry , 2009 .

[29]  I. Sekachev,et al.  Results of the Troitsk experiment on the search for the electron antineutrino rest mass in tritium beta-decay , 1995 .

[30]  B. Bornschein,et al.  Measurement of the gas-flow reduction factor of the KATRIN DPS2-F differential pumping section , 2011, 1107.0220.

[31]  Jonathan Tennyson,et al.  Molecular effects in investigations of tritium molecule beta decay endpoint experiments , 2006 .

[32]  S. Grohmann Stability analyses of the beam tube cooling system in the KATRIN source cryostat , 2009 .

[33]  D. W. Turner,et al.  The collimating and magnifying properties of a superconducting field photoelectron spectrometer , 1980 .

[34]  J. Osán,et al.  Analytical model for the bremsstrahlung spectrum in the 0.25–20 keV photon energy range , 2004 .

[35]  Felix Sharipov,et al.  Data on Internal Rarefied Gas Flows , 1998 .

[36]  Beate Bornschein,et al.  Dynamic Raman spectroscopy of hydrogen isotopomer mixtures in-line at TILO , 2008 .

[37]  E. Otten,et al.  Effects of Plasma Phenomena on Neutrino Mass Measurements Process Using a Gaseous Tritium β-Source , 2005 .