Proportional and proportional-derivative canonical forms for descriptor systems with outputs
暂无分享,去创建一个
[1] B. Molinari. Structural invariants of linear multivariable systems , 1978 .
[2] G. Lebret,et al. A new canonical form for descriptor systems with outputs , 1990 .
[3] Okko H. Bosgra,et al. The determination of structural properties of a linear multivariable system by operations of system similarity. 1. Strictly proper systems , 1979 .
[4] N. Karcanias,et al. Matrix pencil characterization of almost ( A, Z) -invariant subspaces : A classification of geometric concepts , 1981 .
[5] M. Malabre. Generalized linear systems: geometric and structural approaches , 1989 .
[6] James S. Thorp,et al. The singular pencil of a linear dynamical system , 1973 .
[7] O. Bosgra,et al. The determination of structural properties of a linear multivariable system by operations of system similarity 2. Non-proper systems in generalized state-space form† , 1980 .
[8] Frank L. Lewis,et al. A tutorial on the geometric analysis of linear time-invariant implicit systems , 1992, Autom..
[9] F. Lewis. A survey of linear singular systems , 1986 .
[10] Jean Jacques Loiseau,et al. Feedback canonical forms of singular systems , 1991, Kybernetika.
[11] B. Kouvaritakis,et al. The output zeroing problem and its relationship to the invariant zero structure : a matrix pencil approach , 1979 .
[12] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[13] H. Frankowska,et al. On controllability and observability of implicit systems , 1990 .
[14] J. Loiseau. Some geometric considerations about the Kronecker normal form , 1985 .
[15] D. Cobb. Controllability, observability, and duality in singular systems , 1984 .
[16] H. Rosenbrock,et al. State-space and multivariable theory, , 1970 .
[17] K. Ozcaldiran. Control of descriptor systems , 1985 .