Proportional and proportional-derivative canonical forms for descriptor systems with outputs

We construct a new canonical form for descriptor systems (E, A, B, C) under proportional state feedback, proportional output injection and changes of bases in the input space, the output space, the state space (domain) and the state equation space (codomain). Geometric characterizations of the invariants are given. Four pencils are introduced in order to point out the relationships with Kronecker's theory of matrix pencils. This finally allows us to define canonical forms under proportional plus derivative action.

[1]  B. Molinari Structural invariants of linear multivariable systems , 1978 .

[2]  G. Lebret,et al.  A new canonical form for descriptor systems with outputs , 1990 .

[3]  Okko H. Bosgra,et al.  The determination of structural properties of a linear multivariable system by operations of system similarity. 1. Strictly proper systems , 1979 .

[4]  N. Karcanias,et al.  Matrix pencil characterization of almost ( A, Z) -invariant subspaces : A classification of geometric concepts , 1981 .

[5]  M. Malabre Generalized linear systems: geometric and structural approaches , 1989 .

[6]  James S. Thorp,et al.  The singular pencil of a linear dynamical system , 1973 .

[7]  O. Bosgra,et al.  The determination of structural properties of a linear multivariable system by operations of system similarity 2. Non-proper systems in generalized state-space form† , 1980 .

[8]  Frank L. Lewis,et al.  A tutorial on the geometric analysis of linear time-invariant implicit systems , 1992, Autom..

[9]  F. Lewis A survey of linear singular systems , 1986 .

[10]  Jean Jacques Loiseau,et al.  Feedback canonical forms of singular systems , 1991, Kybernetika.

[11]  B. Kouvaritakis,et al.  The output zeroing problem and its relationship to the invariant zero structure : a matrix pencil approach , 1979 .

[12]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[13]  H. Frankowska,et al.  On controllability and observability of implicit systems , 1990 .

[14]  J. Loiseau Some geometric considerations about the Kronecker normal form , 1985 .

[15]  D. Cobb Controllability, observability, and duality in singular systems , 1984 .

[16]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[17]  K. Ozcaldiran Control of descriptor systems , 1985 .