Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes

Abstract Oxygen transport membranes made of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3− δ (BSCF) were manufactured by tape casting and co-firing. The disk-shaped membranes consisted of a top gastight layer (70 μm thick) and a porous substrate (830 μm thick) with 34% open porosity. The variation of the permeation operation conditions allowed (i) the identification of the different limitations steps in the permeation process, i.e., bulk oxygen ion diffusion, catalytic surface exchange and gas phase diffusion in the membrane compartments and porous substrate, and (ii) the ultimate optimization of the oxygen flux. The variables considered in the systematic permeation study included the inlet gas flow rate of the sweep and air feed, the temperature and the nature of the oxygen feed gas (air or pure oxygen). Moreover, the influence of the deposition of a catalytic activation layer (17 μm thick) made of BSCF on top of the thin gastight layer was investigated. As a result of this parametric study, unpreceded oxygen flux values were achieved, i.e., a maximum flux of 67.7 ml(STP) min −1  cm −2 was obtained at 1000 °C using pure oxygen as the feed and argon as the sweep, while a flux of 12.2 ml(STP) min −1  cm −2 at 1000 °C was obtained when air was used as the feed.

[1]  J. Kretzschmar,et al.  Fabrication and oxygen permeability of gastight, macrovoid-free Ba0.5Sr0.5Co0.8Fe0.2O3−δ capillaries for high temperature gas separation , 2010 .

[2]  J. Kilner,et al.  Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)–La0.8Sr0.2MnO3±δ (LSM) composites , 2005 .

[3]  Michael Modigell,et al.  Oxyfuel coal combustion by efficient integration of oxygen transport membranes , 2011 .

[4]  W. Jin,et al.  Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes , 2006 .

[5]  W. Haije,et al.  Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes , 2006 .

[6]  J. M. Serra,et al.  Preparation and properties of thin La1−xSrxCo1−yFeyO3−δ perovskitic membranes supported on tailored ceramic substrates , 2007 .

[7]  Shaomin Liu,et al.  High performance perovskite hollow fibres for oxygen separation , 2011 .

[8]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[9]  Xing Hu,et al.  Enhancing the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O5 + δ membranes by coating RBaCo2O5 + δ(R= Pr, Nd, Sm, Gd) layers , 2010 .

[10]  A. Kovalevsky,et al.  Processing and characterization of La0.5Sr0.5FeO3-supported Sr1−xFe(Al)O3–SrAl2O4 composite membranes , 2006 .

[11]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[12]  H. Bouwmeester,et al.  Oxygen Semi-Permeability of Erbia-Stabilized Bismuth Oxide , 1991 .

[13]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[14]  A. Kovalevsky,et al.  Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes , 2003 .

[15]  J. Kilner,et al.  Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ , 2000 .

[16]  W. Haije,et al.  Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3- δ measured by in situ neutron diffraction , 2006 .

[17]  A. Kovalevsky,et al.  Surface modification of La0.3Sr0.7CoO3−δ ceramic membranes , 2002 .

[18]  P. Geffroy,et al.  Elaboration of La0.8Sr0.2Fe0.7Ga0.3O3−δ/La0.8M0.2FeO3−δ (M = Ca, Sr and Ba) asymmetric membranes by tape-casting and co-firing , 2009 .

[19]  A. Veen,et al.  Influence of oxygen supply rates on performances of catalytic membrane reactors , 2007 .

[20]  T. Riis-Johannessen,et al.  Allosteric-controlled metal specificity of a ditopic ligand. , 2005, Angewandte Chemie.

[21]  S. Misture,et al.  Phase stability of BSCF in low oxygen partial pressures , 2008 .

[22]  A. Leo,et al.  Oxygen permeation through perovskite membranes and the improvement of oxygen flux by surface modification , 2006 .

[23]  W. Jin Preparation of an asymmetric perovskite-type membrane and its oxygen permeability , 2001 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  W. Pabst,et al.  Characterization of different starch types for their application in ceramic processing , 2006 .

[26]  D. Stöver,et al.  Supported Oxygen Transport Membranes for Oxyfuel Power Plants , 2010 .

[27]  J. M. Serra,et al.  IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites , 2008 .

[28]  G. Choi,et al.  Oxygen permeation of BSCF membrane with varying thickness and surface coating , 2010 .

[29]  Michael Modigell,et al.  Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN , 2010 .

[30]  W. Jin,et al.  Experimental and modeling study of oxygen permeation modes for asymmetric mixed-conducting membranes , 2008 .

[31]  Hollow fibre perovskite membranes for oxygen separation , 2005 .

[32]  J. Caro,et al.  Perovskite hollow-fiber membranes for the production of oxygen-enriched air. , 2005, Angewandte Chemie.

[33]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[34]  J. Kretzschmar,et al.  Oxygen exchange-limited transport and surface activation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ capillary membranes , 2011 .

[35]  N. Yamazoe,et al.  Preparation of oxygen evolution layer/La0.6Ca0.4CoO3 dense membrane/porous support asymmetric structure for high-performance oxygen permeation , 2008 .

[36]  D. Stöver,et al.  Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) oxygen transport membranes , 2010 .