Expanding the optical trapping range of lipid vesicles to the nanoscale.

Small unilamellar lipid vesicles with diameters down to 50 nm enclosing high refractive index sucrose cores can be optically trapped individually in three dimensions using a focused laser beam. Combined optical trapping and confocal microscopy allows for simultaneous quantitative measurements of the forces exerted on individual vesicles and of their size and shape. The position of individual vesicles in three dimensions is measured with nanometer spatial and ∼10 μs temporal resolution.

[1]  Christoph F. Schmidt,et al.  Moving into the cell: single-molecule studies of molecular motors in complex environments , 2011, Nature Reviews Molecular Cell Biology.

[2]  Valentina Cauda,et al.  Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. , 2010, Nano letters.

[3]  F. Wouters,et al.  One SNARE complex is sufficient for membrane fusion , 2010, Nature Structural &Molecular Biology.

[4]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[5]  Klaas Nicolay,et al.  Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. , 2010, Nano letters.

[6]  Lene B. Oddershede,et al.  Quantification of droplet deformation by electromagnetic trapping , 2009 .

[7]  Steven M. Block,et al.  Direct observation of the binding state of the kinesin head to the microtubule , 2009, Nature.

[8]  A. Brunger,et al.  Single-molecule studies of the neuronal SNARE fusion machinery. , 2009, Annual review of biochemistry.

[9]  Helmuth Möhwald,et al.  Near-IR remote release from assemblies of liposomes and nanoparticles. , 2009, Angewandte Chemie.

[10]  Pierre-Yves Bolinger,et al.  Encapsulation efficiency measured on single small unilamellar vesicles. , 2008, Journal of the American Chemical Society.

[11]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[12]  Sune M. Christensen,et al.  A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. , 2008, Biophysical journal.

[13]  L. Oddershede,et al.  Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. , 2007, Optics letters.

[14]  L Xu,et al.  Refractive index measurement for biomaterial samples by total internal reflection , 2006, Physics in medicine and biology.

[15]  Kirstine Berg-Sørensen,et al.  tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers , 2006, Comput. Phys. Commun..

[16]  Andrew C. Richardson,et al.  Combining confocal microscopy with precise force-scope optical tweezers , 2006, SPIE Optics + Photonics.

[17]  Jakob K. Dreyer,et al.  Quantitative approach to small-scale nonequilibrium systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Kirstine Berg-Sørensen,et al.  tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers , 2006, Comput. Phys. Commun..

[19]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[20]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[21]  Jakob K. Dreyer,et al.  Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories. , 2005, Journal of colloid and interface science.

[22]  Daniel P. Cherney,et al.  Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy. , 2004, Analytical chemistry.

[23]  Christoph F Schmidt,et al.  Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. , 2004, The journal of physical chemistry. B.

[24]  Lene Oddershede,et al.  Improved axial position detection in optical tweezers measurements. , 2004, Applied optics.

[25]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[26]  J. Conboy,et al.  Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles. , 2003, Analytical chemistry.

[27]  Lene B. Oddershede,et al.  Unintended filtering in a typical photodiode detection system for optical tweezers , 2003 .

[28]  E. Stelzer,et al.  Three-dimensional position detection of optically trapped dielectric particles , 2002 .

[29]  Kenichi Yoshikawa,et al.  Optical transport of a single cell-sized liposome , 2001 .

[30]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[31]  E Moses,et al.  Dynamic excitations in membranes induced by optical tweezers. , 1998, Biophysical journal.

[32]  R. Zare,et al.  Probing single secretory vesicles with capillary electrophoresis. , 1998, Science.

[33]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[34]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[35]  Hiroshi Masuhara,et al.  Three‐dimensional optical trapping and laser ablation of a single polymer latex particle in water , 1991 .

[36]  Evan Evans,et al.  Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions , 1987 .