A computational lifetime prediction of a thermal shock experiment. Part II: discussion on difference fatigue criteria

The SPLASH experiment has been designed in 1985 by the CEA to simulate thermal fatigue due to cooling shocks on steel specimens and is similar to the device reported by Marsh in Ref. [1]. The purpose of this paper is to discuss the application of different fatigue criteria in this case. The fatigue criteria: dissipated energy, Manson Coffin, Park and Nelson, dissipated energy with a pressure term, are determined for the experiment using results from FEM computations presented in the first part of the paper (Part I) 2 and compared with results from uniaxial and multiaxial experiments from literature. The work emphasizes the evolution of the triaxiality ratio during the loading cycle.

[1]  Erhard Krempl,et al.  Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers , 2003 .

[2]  T. Bui-Quoc,et al.  Fatigue Life Parameter for Type 304 Stainless Steel Under Biaxial-Tensile Loading at Elevated Temperature , 1999 .

[3]  W. J. Ostergren,et al.  A DAMAGE FUNCTION AND ASSOCIATED FAILURE EQUATIONS FOR PREDICTING HOLD TIME AND FREQUENCY EFFECTS IN ELEVATED TEMPERATURE, LOW CYCLE FATIGUE , 1976 .

[4]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[5]  Gérard Degallaix,et al.  Thermal fatigue crack networks parameters and stability: an experimental study , 2005 .

[6]  D. Socie,et al.  Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel , 1995 .

[7]  Drew V. Nelson,et al.  Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life , 2000 .

[8]  Andrei Kotousov,et al.  Features of fatigue crack growth due to repeated thermal shock , 2002 .

[9]  Yukio Takahashi,et al.  Thermal Fatigue Behavior of a SUS304 Pipe Under Longitudinal Cyclic Movement of Axial Temperature Distribution , 1996 .

[10]  Masao Sakane,et al.  Biaxial Low Cycle Fatigue of Unaged and Aged 1Cr-1Mo-1/4V Steels at Elevated Temperature , 1991 .

[11]  Ahmed Benallal,et al.  Constitutive Equations for Nonproportional Cyclic Elasto-Viscoplasticity , 1987 .

[12]  John W. H. Price,et al.  Potential guidelines for design and fitness for purpose for carbon steel components subject to repeated thermal shock , 2004 .

[13]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[14]  S. Manson Behavior of materials under conditions of thermal stress , 1953 .

[15]  D. J. Marsh,et al.  A THERMAL SHOCK FATIGUE STUDY OF TYPE 304 AND 316 STAINLESS STEELS , 1981 .

[16]  R. P. Skelton,et al.  Energy criterion for high temperature low cycle fatigue failure , 1991 .

[17]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[18]  Ce Jaske,et al.  Thermal-Mechanical, Low-Cycle Fatigue of AISI 1010 Steel , 1976 .

[19]  Eric Charkaluk,et al.  An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron , 2000 .

[20]  Jarir Aktaa,et al.  Microcrack propagation and fatigue lifetime under non-proportional multiaxial cyclic loading , 2003 .

[21]  Stéphane Chapuliot,et al.  A computational lifetime prediction of a thermal shock experiment. Part I: thermomechanical modelling and lifetime prediction , 2006 .

[22]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[23]  Valérie Maillot Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304 L) , 2003 .