A computational lifetime prediction of a thermal shock experiment. Part II: discussion on difference fatigue criteria
暂无分享,去创建一个
Stéphane Chapuliot | Andrei Constantinescu | A. Fissolo | S. Amiable | A. Fissolo | A. Constantinescu | S. Amiable | Sébastien Amiable | Antoine Fissolo | Sébastien Chapuliot | Sébastien Chapuliot
[1] Erhard Krempl,et al. Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers , 2003 .
[2] T. Bui-Quoc,et al. Fatigue Life Parameter for Type 304 Stainless Steel Under Biaxial-Tensile Loading at Elevated Temperature , 1999 .
[3] W. J. Ostergren,et al. A DAMAGE FUNCTION AND ASSOCIATED FAILURE EQUATIONS FOR PREDICTING HOLD TIME AND FREQUENCY EFFECTS IN ELEVATED TEMPERATURE, LOW CYCLE FATIGUE , 1976 .
[4] A. Fatemi,et al. A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .
[5] Gérard Degallaix,et al. Thermal fatigue crack networks parameters and stability: an experimental study , 2005 .
[6] D. Socie,et al. Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel , 1995 .
[7] Drew V. Nelson,et al. Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life , 2000 .
[8] Andrei Kotousov,et al. Features of fatigue crack growth due to repeated thermal shock , 2002 .
[9] Yukio Takahashi,et al. Thermal Fatigue Behavior of a SUS304 Pipe Under Longitudinal Cyclic Movement of Axial Temperature Distribution , 1996 .
[10] Masao Sakane,et al. Biaxial Low Cycle Fatigue of Unaged and Aged 1Cr-1Mo-1/4V Steels at Elevated Temperature , 1991 .
[11] Ahmed Benallal,et al. Constitutive Equations for Nonproportional Cyclic Elasto-Viscoplasticity , 1987 .
[12] John W. H. Price,et al. Potential guidelines for design and fitness for purpose for carbon steel components subject to repeated thermal shock , 2004 .
[13] Darrell F. Socie,et al. Multiaxial Fatigue Damage Models , 1987 .
[14] S. Manson. Behavior of materials under conditions of thermal stress , 1953 .
[15] D. J. Marsh,et al. A THERMAL SHOCK FATIGUE STUDY OF TYPE 304 AND 316 STAINLESS STEELS , 1981 .
[16] R. P. Skelton,et al. Energy criterion for high temperature low cycle fatigue failure , 1991 .
[17] Eric Charkaluk,et al. A computational approach to thermomechanical fatigue , 2004 .
[18] Ce Jaske,et al. Thermal-Mechanical, Low-Cycle Fatigue of AISI 1010 Steel , 1976 .
[19] Eric Charkaluk,et al. An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron , 2000 .
[20] Jarir Aktaa,et al. Microcrack propagation and fatigue lifetime under non-proportional multiaxial cyclic loading , 2003 .
[21] Stéphane Chapuliot,et al. A computational lifetime prediction of a thermal shock experiment. Part I: thermomechanical modelling and lifetime prediction , 2006 .
[22] K. N. Smith. A Stress-Strain Function for the Fatigue of Metals , 1970 .
[23] Valérie Maillot. Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304 L) , 2003 .