T-matrix approach to shale acoustics

SUMMARY The T-matrix approach of quantum scattering theory is used here to place many long-wavelength equivalent-medium approximations for porous composites, polycrystals and cracked media on a common footing and to indicate their limitations, but also to derive some new results based on two-point statistics. In this way, we have obtained an insight into the difficult problem of elastic inclusions at finite concentrations, which is of foremost relevance when estimating the effective material parameters of porous/cracked shales, involving stacks of more or less horizontally aligned clay platelets, mixed together with more rounded silt minerals, and with fluid filling the spaces. A rather involved perturbative analysis of the effects of interactions between (or structural correlations among) the various inclusions (minerals and cavities) making up a real shale of hexagonal symmetry was performed in an attempt to obtain a better match between theoretical predictions (based on a combination of coherent and optical potential approximations) and experimental results (recovered from ultrasonic wave speeds) for the effective elastic stiffness tensor. For the particular data set considered in this study, the T-matrix approach was able to match the data better than the approach of Hornby et al., but the match was not completely satisfactory. Further progress in theoretical shale modelling may come from a better knowledge of the elastic properties of pure clay minerals, a more detailed knowledge of the microstructure of shales, the incorporation of constraints obtained from comparisons between theoretical predictions and experimental results, as well as a continuing development of the T-matrix approach. Numerical results (also for the effect of bedding parallel microcracks on the elasticity of such a real shale) have value in illustrating the importance of taking into account the effects of spatial distribution when trying to deal with non-dilute mixtures of highly contrasting material properties.

[1]  L. Vernik,et al.  Velocity anisotropy in shales: A petrophysical study , 1997 .

[2]  W. Bryant,et al.  Frontiers in Sedimentary Geology: Microstructure of Fine-Grained Sediments from Mud to Shale , 1990 .

[3]  C. Nan,et al.  On Correlation Effect in t‐Matrix Method for Effective Elastic Moduli of Composites , 1998 .

[4]  P. Leath,et al.  The theory and properties of randomly disordered crystals and related physical systems , 1974 .

[5]  I. Tsvankin P-wave signatures and notation for transversely isotropic media: An overview , 1996 .

[6]  P. R. Morris Averaging Fourth‐Rank Tensors with Weight Functions , 1969 .

[7]  Leon Thomsen,et al.  Biot-consistent elastic moduli of porous rocks; low-frequency limit , 1985 .

[8]  A. Molinari,et al.  The problem of elastic inclusions at finite concentration , 1996 .

[9]  K. Katahara Clay Mineral Elastic Properties , 1996 .

[10]  Basu,et al.  T-matrix approach to effective nonlinear elastic constants of heterogeneous materials. , 1996, Physical review. B, Condensed matter.

[11]  Leon Thomsen,et al.  Elasticity of polycrystals and rocks , 1972 .

[12]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[13]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[14]  J. Hudson A higher order approximation to the wave propagation constants for a cracked solid , 1986 .

[15]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[16]  J. Hudson Overall Properties of A Material With Inclusions Or Cavities , 1994 .

[17]  D. Mainprice Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges , 1997 .

[18]  Herbert F. Wang,et al.  Ultrasonic velocities in Cretaceous shales from the Williston basin , 1981 .

[19]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[20]  Sheng,et al.  Effective-medium theory of sedimentary rocks. , 1990, Physical review. B, Condensed matter.

[21]  L. Thomsen Weak elastic anisotropy , 1986 .

[22]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions , 1980 .

[23]  J. Hudson Overall properties of anisotropic materials containing cracks , 1994 .

[24]  M. Le Ravalec,et al.  Microstructures, percolation thresholds, and rock physical properties , 1997 .

[25]  O. Nishizawa SEISMIC VELOCITY ANISOTROPY IN A MEDIUM CONTAINING ORIENTED CRACKS , 1982 .

[26]  C. Sayers Stress‐dependent seismic anisotropy of shales , 1999 .

[27]  M. Jakobsen,et al.  Effect of grain scale alignment on seismic anisotropy and reflectivity of shales , 2004 .

[28]  John A. Hudson,et al.  Elastic properties of hydrate‐bearing sediments using effective medium theory , 2000 .

[29]  J. E. Gubernatis,et al.  Macroscopic engineering properties of polycrystalline materials: Elastic properties , 1975 .

[30]  P. R. Morris Elastic constants of polycrystals , 1970 .

[31]  D. H. Johnston Physical properties of shale at temperature and pressure , 1987 .

[32]  Shiyu Xu Modelling the effect of fluid communication on velocities in anisotropic porous rocks , 1998 .

[33]  J. Hudson Overall properties of heterogeneous material , 1991 .

[34]  J. Willis,et al.  The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .

[35]  E. Domany,et al.  The elasticity of polycrystals and rocks , 1975 .

[36]  J. Willis,et al.  Variational and Related Methods for the Overall Properties of Composites , 1981 .

[37]  H. Yin Acoustic velocity and attenuation of rocks : isotropy, intrinsic anisotropy, and stress-induced anisotropy , 1992 .

[38]  M. Philippe,et al.  RELATIONS BETWEEN TEXTURE AND ANISOTROPIC PROPERTIES SOME APPLICATIONS TO LOW SYMMETRY MATERIALS , 1991 .

[39]  C. Sayers,et al.  The elastic anisotrophy of shales , 1994 .

[40]  E. Kaarsberg Introductory Studies of Natural and Artificial Argillaceous Aggregates by Sound-Propagation and X-ray Diffraction Methods , 1959, The Journal of Geology.

[41]  P. H. Dederichs,et al.  Elastische Konstanten von Vielkristallen , 1972 .

[42]  A. Nowick,et al.  Crystal properties via group theory , 1995 .

[43]  Philip M. Morse,et al.  Methods of Mathematical Physics , 1947, The Mathematical Gazette.

[44]  J. White,et al.  Measured anisotropy in Pierre Shale , 1983 .

[45]  T. R. Middya,et al.  Self‐consistent T‐matrix solution for the effective elastic properties of noncubic polycrystals , 1986 .

[46]  G. Roach,et al.  Green's Functions , 1982 .

[47]  Chuen Hon Arthur Cheng Crack models for a transversely isotropic medium , 1993 .

[48]  Donald F. Winterstein,et al.  Velocity anisotropy in shale determined from crosshole seismic and vertical seismic profile data , 1990 .

[49]  N. Christensen,et al.  Seismic anisotropy of shales , 1995 .

[50]  William Thomson,et al.  I. Elements of a mathematical theory of elasticity , 1857, Proceedings of the Royal Society of London.

[51]  D. W. Taylor Vibrational Properties of Imperfect Crystals with Large Defect Concentrations , 1967 .

[52]  J. Berryman Single‐scattering approximations for coefficients in Biot’s equations of poroelasticity , 1992 .

[53]  S. Hirsekorn Elastic Properties of Polycrystals: A Review , 1990 .

[54]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[55]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[56]  K. Watson MULTIPLE SCATTERING BY QUANTUM-MECHANICAL SYSTEMS , 1957 .

[57]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[58]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  John A. Hudson,et al.  Anisotropic effective‐medium modeling of the elastic properties of shales , 1994 .

[60]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[61]  M. Humbert,et al.  Practical aspects of calculating the elastic properties of polycrystals from the texture according to different models , 1992 .

[62]  C. P. Ross,et al.  Seismic offset balancing , 1994 .

[63]  Mark Sams,et al.  The effect of clay distribution on the elastic properties of sandstones , 2001 .

[64]  M. Verma,et al.  Polycrystalline Elastic Moduli of Some Hexagonal and Tetragonal Materials , 1990 .

[65]  Mark Kachanov,et al.  Elastic Solids with Many Cracks and Related Problems , 1993 .

[66]  J. McCoy On the calculation of bulk properties of heterogeneous materials , 1979 .

[67]  Rudolf Zeller,et al.  Elastic Constants of Polycrystals , 1973 .

[68]  B. Hendrix,et al.  Self-consistent elastic properties for transversely isotropic polycrystals , 1998 .

[69]  R. Roe Description of Crystallite Orientation in Polycrystalline Materials. III. General Solution to Pole Figure Inversion , 1965 .

[70]  Salvatore Torquato,et al.  Exact Expression for the Effective Elastic Tensor of Disordered Composites , 1997 .

[71]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media I. Spherical inclusions , 1980 .

[72]  J. Douma THE EFFECT OF THE ASPECT RATIO ON CRACK-INDUCED ANISOTROPY1 , 1988 .

[73]  B. Hornby Experimental laboratory determination of the dynamic elastic properties of wet, drained shales , 1998 .

[74]  J. Hudson Wave speeds and attenuation of elastic waves in material containing cracks , 1981 .

[75]  J. Hudson Seismic wave propagation through material containing partially saturated cracks , 1988 .

[76]  M. Cates,et al.  Effective elastic properties of solid clays , 2001 .

[77]  Karl B. Coyner,et al.  Experimental determination of elastic anisotropy of Berea Sandstone, Chicopee Shale, and Chelmsford Granite , 1986 .

[78]  Sibel Pamukcu,et al.  Microstructure of Fine-Grained Sediments , 1991 .

[79]  N. H. March,et al.  The many-body problem in quantum mechanics , 1968 .

[80]  T. Johansen,et al.  Anisotropic approximations for mudrocks : A seismic laboratory study , 2000 .

[81]  J. Sherwood,et al.  Biot poroelasticity of a chemically active shale , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[82]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[83]  H. Bunge Mittelungsverfahren bei Dreidimensionalen Texturen , 1974 .

[84]  J. Hudson Overall properties of a cracked solid , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[85]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[86]  Tor Arne Johansen,et al.  The acoustic signature of fluid flow in complex porous media , 2003 .

[87]  J. Hudson,et al.  The mechanical properties of materials with interconnected cracks and pores , 1996 .

[88]  L. Vernik Hydrocarbon‐generation‐induced microcracking of source rocks , 1994 .

[89]  A. R. Gregory,et al.  Dynamic Properties of Dry and Water-Saturated Green River Shale Under Stress , 1968 .

[90]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .