Development of a simulation model to predict LiDAR interception in forested environments

Abstract Airborne scanning LiDAR systems are used to predict a range of forest attributes. However, the accuracy with which this can be achieved is highly dependent on the sensor configuration and the structural characteristics of the forest examined. As a result, there is a need to understand laser light interactions with forest canopies so that LiDAR sensor configurations can be optimised to assess particular forest types. Such optimisation will not only ensure the targeted forest attributes can be accurately and consistently quantified, but may also minimise the cost of data acquisition and indicate when a survey configuration will not deliver information needs. In this paper, we detail the development and application of a model to simulate laser interactions within forested environments. The developed model, known as the LiDAR Interception and Tree Environment (LITE) model, utilises a range of structural configurations to simulate trees with variable heights, crown dimensions and foliage clumping. We developed and validated the LITE model using field data obtained from three forested sites covering a range of structural classes. Model simulations were then compared to coincident airborne LiDAR data collected over the same sites. Results indicate that the LITE model can be used to produce comparable estimates of maximum height of trees within plots (differences r 2  = 0.94, p