Intelligent control system for HSM

[1]  I. S. Jawahir,et al.  Development of hybrid predictive models and optimization techniques for machining operations , 2007 .

[2]  Franci Cus,et al.  INTELLIGENT ADAPTIVE CUTTING FORCE CONTROL IN END-MILLING , 2006 .

[3]  Gerhard Venter,et al.  Review of optimization techniques , 2010 .

[4]  S. G. Deshmukh,et al.  A genetic algorithmic approach for optimization of surface roughness prediction model , 2002 .

[5]  Bogomir Muršec,et al.  Integral model of selection of optimal cutting conditions from different databases of tool makers , 2003 .

[6]  P G Maropoulos,et al.  Automatic tool selection for milling operations Part 1: Cutting data generation , 2000 .

[7]  U. Zuperl,et al.  A hybrid analytical-neural network approach to the determination of optimal cutting conditions , 2004 .

[8]  S. Shanmugasundaram,et al.  Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations , 2007 .

[9]  Ruben Morales-Menendez,et al.  DESIGNING A COST-EFFECTIVE SUPERVISORY CONTROL SYSTEM FOR MACHINING PROCESSES , 2007 .

[10]  Yih-fong Tzeng,et al.  Optimization of the High-Speed CNC Milling Process Using Two-Phase Parameter Design Strategy by the Taguchi Methods , 2005 .

[11]  Rubén Morales-Menéndez,et al.  Intelligent monitoring and decision control system for peripheral milling process , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[12]  Ibrahim N. Tansel,et al.  Selection of optimal cutting conditions by using GONNS , 2006 .

[13]  Rubén Morales-Menéndez,et al.  Tool-Wear Monitoring Based on Continuous Hidden Markov Models , 2005, CIARP.

[14]  E. Wong,et al.  Comparison of linear prediction cepstrum coefficients and mel-frequency cepstrum coefficients for language identification , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).