Early alterations in the postprandial VLDL1 apoB‐100 and apoB‐48 metabolism in men with strong heredity for type 2 diabetes

Objectives.  To study the postprandial triglyceride‐rich lipoprotein (TRL) metabolism, specifically the concentrations of very low‐density lipoproteins (VLDL); from intestine (apoB‐48) and liver (apoB‐100), in men with normal fasting triglycerides but at increased risk of developing type 2 diabetes.

[1]  T. Funahashi,et al.  Fat distribution, lipid accumulation in the liver, and exercise capacity do not explain the insulin resistance in healthy males with a family history for type 2 diabetes. , 2003, The Journal of clinical endocrinology and metabolism.

[2]  M. Castro Cabezas,et al.  Intra-individual variations of fasting plasma lipids, apolipoproteins and postprandial lipemia in familial combined hyperlipidemia compared to controls. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[3]  M. Taskinen,et al.  Effects of nateglinide and glibenclamide on postprandial lipid and glucose metabolism in type 2 diabetes , 2002, Diabetes/metabolism research and reviews.

[4]  H. Ginsberg New Perspectives on Atherogenesis: Role of Abnormal Triglyceride-Rich Lipoprotein Metabolism , 2002, Circulation.

[5]  A. Ceriello,et al.  Evidence for an Independent and Cumulative Effect of Postprandial Hypertriglyceridemia and Hyperglycemia on Endothelial Dysfunction and Oxidative Stress Generation: Effects of Short- and Long-Term Simvastatin Treatment , 2002, Circulation.

[6]  G. Lewis,et al.  Fasting and Postprandial Overproduction of Intestinally Derived Lipoproteins in an Animal Model of Insulin Resistance , 2002, The Journal of Biological Chemistry.

[7]  C. Phillips,et al.  Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidemia in diabetes. , 2002, Metabolism: clinical and experimental.

[8]  C. Phillips,et al.  Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? , 2002, Atherosclerosis.

[9]  P. Maheux,et al.  Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue‐specific manner , 2002, European journal of clinical investigation.

[10]  K. Shimokado,et al.  Metabolism of Triglyceride‐Rich Lipoproteins and Their Role in Atherosclerosis , 2001, Annals of the New York Academy of Sciences.

[11]  M. Taskinen,et al.  Endothelial dysfunction in men with small LDL particles. , 2000, Circulation.

[12]  M. Taskinen,et al.  Postprandial Hypertriglyceridemia and Insulin Resistance in Normoglycemic First-Degree Relatives of Patients with Type 2 Diabetes , 1999, Annals of Internal Medicine.

[13]  M. Taskinen,et al.  Postprandial lipid metabolism in diabetes. , 1998, Atherosclerosis.

[14]  A. Hamsten,et al.  Magnitude of alimentary lipemia is related to intima-media thickness of the common carotid artery in middle-aged men. , 1998, Atherosclerosis.

[15]  Taskinen,et al.  Comparison of three fatty meals in healthy normolipidaemic men: high post‐prandial retinyl ester response to soybean oil , 1998, European journal of clinical investigation.

[16]  M. Taskinen,et al.  Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. , 1998, Diabetes.

[17]  M. Taskinen,et al.  Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM , 1997, Diabetologia.

[18]  R. Krauss,et al.  Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. , 1996, JAMA.

[19]  T. D. de Bruin,et al.  Triglyceride‐rich lipoproteins in non‐insulin‐dependent diabetes mellitus: post‐prandial metabolism and relation to premature atherosclerosis , 1996, European journal of clinical investigation.

[20]  L. Chambless,et al.  Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. The Atherosclerosis Risk in Communities (ARIC) Study. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[21]  T. R. Hennessy,et al.  Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM , 1995, Diabetologia.

[22]  R. Eckel,et al.  Alterations in lipoprotein lipase in insulin resistance. , 1995, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity.

[23]  L. Groop,et al.  Changes of lipolytic enzymes cluster with insulin resistance syndrome , 1995, Diabetologia.

[24]  J. Björkegren,et al.  Quantification of postprandial triglyceride-rich lipoproteins in healthy men by retinyl ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[25]  R. Havel,et al.  Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[26]  A. Hamsten,et al.  Determination of apolipoproteins B-48 and B-100 in triglyceride-rich lipoproteins by analytical SDS-PAGE. , 1994, Journal of lipid research.

[27]  A. Hamsten,et al.  Postprandial lipoproteins and progression of coronary atherosclerosis. , 1994, Atherosclerosis.

[28]  H. Lithell,et al.  Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[29]  K. Polonsky,et al.  Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test. , 1990, The Journal of clinical endocrinology and metabolism.

[30]  S Senn,et al.  Analysis of serial measurements in medical research. , 1990, BMJ.

[31]  B. Howard,et al.  Coordination of very low-density lipoprotein triglyceride and apolipoprotein B metabolism in humans: effects of obesity and non-insulin-dependent diabetes mellitus. , 1987, American heart journal.

[32]  G. Tomkin,et al.  Abnormalities in apo B‐containing lipoproteins in diabetes and atherosclerosis , 2001, Diabetes/metabolism research and reviews.

[33]  A. Hamsten,et al.  Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides. , 2001, Journal of lipid research.