Analysis of the Yukawa gravitational potential inf(R)gravity. II. Relativistic periastron advance
暂无分享,去创建一个
[1] kendine özgü,et al. 06 , 2018, Memoriam.
[2] R. Lazkoz,et al. Analysis of the Yukawa gravitational potential in f(R) gravity. I. Semiclassical periastron advance , 2018, Physical Review D.
[3] T. Broadhurst,et al. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays , 2018 .
[4] P. Jovanović,et al. Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvement expectations for graviton mass bounds , 2018, 1801.04679.
[5] I. Lopes,et al. Dark matter admixed strange quark stars in the Starobinsky model , 2018, 1801.05031.
[6] I. Lopes,et al. Dark stars in Starobinsky’s model , 2018, 1801.03387.
[7] L. Rezzolla,et al. Test-particle dynamics in general spherically symmetric black hole spacetimes , 2017, 1712.00265.
[8] M. Bianchi,et al. Proceedings, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes) , 2017 .
[9] Xing Zhang,et al. Constraining $f(R)$ gravity in solar system, cosmology and binary pulsar systems , 2017, 1711.08991.
[10] B. Jain,et al. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.
[11] J. K. Blackburn,et al. A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.
[12] A. Capolupo. Quantum vacuum, dark matter, dark energy and spontaneous supersymmetry breaking , 2017, 1708.08769.
[13] V. Oikonomou,et al. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.
[14] Tzihong Chiueh,et al. Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing. , 2017, Physical review letters.
[15] A. Buonanno,et al. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors , 2017, 1704.07561.
[16] S. Capozziello,et al. Evolution of gravitons in accelerating cosmologies: The case of extended gravity , 2017, 1702.05517.
[17] L. Lombriser,et al. Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure , 2016, 1602.07670.
[18] O. Porth,et al. Constraining alternative theories of gravity using GW150914 and GW151226 , 2016, 1611.05766.
[19] A. Capolupo. Dark Matter and Dark Energy Induced by Condensates , 2016, 1608.05407.
[20] I. D. Martino. f(R) -gravity model of the Sunyaev-Zeldovich profile of the Coma cluster compatible with Planck data , 2016, 1605.08223.
[21] D. Kocevski,et al. Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data , 2016, 1605.03053.
[22] Alan E. E. Rogers,et al. PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES , 2016, 1602.05527.
[23] Sabine Fenstermacher. Handbook Of Pulsar Astronomy , 2016 .
[24] I. del C. Santiago-Bautista,et al. Astrophysics and Space Science Proceedings , 2016 .
[25] P. Ho,et al. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.
[26] L. Lombriser,et al. Breaking a dark degeneracy with gravitational waves , 2015, 1509.08458.
[27] S. Capozziello,et al. Constraining $f(R)$ Gravity by the Large-Scale Structure , 2015, 1507.06123.
[28] Alan E. E. Rogers,et al. 230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.
[29] L. Rezzolla,et al. A coordinate-independent characterization of a black hole shadow , 2015, 1503.09054.
[30] R. G'enova-Santos,et al. CONSTRAINING THE REDSHIFT EVOLUTION OF THE COSMIC MICROWAVE BACKGROUND BLACKBODY TEMPERATURE WITH PLANCK DATA , 2015, 1502.06707.
[31] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[32] Marco O. P. Sampaio,et al. Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.
[33] I. D. Martino,et al. Probing the physical and mathematical structure of f(R)-gravity by PSR J0348 + 0432 , 2013, 1310.0711.
[34] J. Antoniadis. Gravitational Radiation from Compact Binary Pulsars , 2014, 1407.3404.
[35] T. Broadhurst,et al. Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.
[36] D. Lorimer,et al. The Galactic Centre pulsar population. , 2013, 1311.4846.
[37] S. Capozziello,et al. Constraining f(R) gravity with Planck data on galaxy cluster profiles , 2013, 1310.0693.
[38] P. Jovanović,et al. Constraining the range of Yukawa gravity interaction from S2 star orbits II: bounds on graviton mass , 2016, 1605.00913.
[39] R. P. Eatough,et al. A strong magnetic field around the supermassive black hole at the centre of the Galaxy , 2013, Nature.
[40] I. D. Martino,et al. Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars , 2013, 1302.0220.
[41] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[42] Alan E. E. Rogers,et al. Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.
[43] S. Capozziello,et al. The dark matter problem from f(R) gravity viewpoint , 2012 .
[44] L. Milano,et al. Testing gravitational theories using eccentric eclipsing detached binaries , 2012, 1207.5410.
[45] A. Zakharov,et al. Constraints onRngravity from precession of orbits of S2-like stars , 2012, 1206.0851.
[46] P. Freire,et al. The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.
[47] Testing Yukawa-like Potentials from f(R)-gravity in Elliptical Galaxies , 2012, 1201.3363.
[48] N. Wex,et al. PROSPECTS FOR PROBING THE SPACETIME OF Sgr A* WITH PULSARS , 2011, 1112.2151.
[49] Lorenzo Iorio,et al. Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology , 2011, 1109.6249.
[50] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[51] S. Capozziello,et al. Extended Theories of Gravity , 2011, 1108.6266.
[52] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.
[53] S. Deustua,et al. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.
[54] Badr N. Alsuwaidan,et al. Gravity Probe B: final results of a space experiment to test general relativity. , 2011, Physical review letters.
[55] J. Gair,et al. Linearized f ( R ) gravity: Gravitational radiation and Solar System tests , 2011, 1104.0819.
[56] S. Capozziello,et al. Systematic biases on galaxy haloes parameters from Yukawa‐like gravitational potentials , 2011, 1102.0916.
[57] M. Wright,et al. 1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.
[58] Sergei D. Odintsov,et al. Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.
[59] D. Merritt,et al. TOWARD RELATIVISTIC ORBIT FITTING OF GALACTIC CENTER STARS AND PULSARS , 2010, 1007.0007.
[60] Jonathan L. Feng. Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.
[61] S. Tsujikawa,et al. f(R) Theories , 2010, Living reviews in relativity.
[62] S. Capozziello,et al. Massive, massless and ghost modes of gravitational waves from higher-order gravity , 2009, 0911.3094.
[63] J. Khoury,et al. N-body simulations of DGP and degravitation theories , 2009, 0903.1292.
[64] S. Capozziello,et al. Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity , 2008, 0812.1348.
[65] S. Capozziello,et al. Modelling clusters of galaxies by f(R)-gravity , 2008, 0809.1882.
[66] A. Niell,et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.
[67] Jessica R. Lu,et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.
[68] S. Capozziello,et al. From Dark Energy & Dark Matter to Dark Metric , 2008, 0805.3642.
[69] S. Capozziello,et al. Spherical symmetry in f(R)-gravity , 2007, 0709.0891.
[70] S. Capozziello,et al. Spherically symmetric solutions in f(R) gravity via the Noether symmetry approach , 2007, gr-qc/0703067.
[71] Zhi-qiang Shen,et al. Black hole shadow image and visibility analysis of Sagittarius A , 2007, astro-ph/0703254.
[72] L. Iorio. First preliminary tests of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force from planetary data , 2005, gr-qc/0507041.
[73] L. Iorio. CAN SOLAR SYSTEM OBSERVATIONS TELL US SOMETHING ABOUT THE COSMOLOGICAL CONSTANT , 2005, gr-qc/0511137.
[74] J. Neill,et al. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.
[75] L. Iorio. On the effects of Dvali–Gabadadze–Porrati braneworld gravity on the orbital motion of a test particle , 2005, gr-qc/0504053.
[76] G. Bertone,et al. Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.
[77] J. Cordes,et al. Strong-field tests of gravity using pulsars and black holes , 2004 .
[78] C. Carilli,et al. Science with the Square Kilometer Array , 2004, astro-ph/0409274.
[79] Stefano Casertano,et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.
[80] Alexander S. Szalay,et al. Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts , 2004, astro-ph/0401249.
[81] J. Khoury,et al. Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.
[82] R. Nichol,et al. The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.
[83] I. Stairs. Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.
[84] R. Abuter,et al. A Geometric Determination of the Distance to the Galactic Center , 2003, astro-ph/0306220.
[85] L. Iorio. Constraints on a Yukawa gravitational potential from laser data of LAGEOS satellites , 2002, gr-qc/0201081.
[86] R. Ellis,et al. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.
[87] H. Falcke,et al. Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.
[88] Einstein Frame or Jordan Frame? , 1999, astro-ph/9910176.
[89] J. C. Lee,et al. Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.
[90] Sokolowski,et al. Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field. , 1994, Physical review. D, Particles and fields.
[91] Clifford M. Will,et al. Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .
[92] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[93] D. Raine,et al. Quantum Gravity 2: A Second Oxford Symposium , 1982 .
[94] Clifford M. Will,et al. Theory and Experiment in Gravitational Physics , 1982 .
[95] H. Friedman,et al. Interpretation of X-Ray Photograph of the Sun. , 1963 .
[96] Phillip Capper. The Proceedings , 2020, International Arbitration: A Handbook.