Analysis of the Yukawa gravitational potential inf(R)gravity. II. Relativistic periastron advance

Alternative theories of gravity may serve to overcome several shortcomings of the standard cosmological model but, in their weak field limit, general relativity must be recovered so as to match the tight constraints at the Solar System scale. Therefore, testing such alternative models at scales of stellar systems could give a unique opportunity to confirm or rule them out. One of the most straightforward modifications is represented by analytical f(R)-gravity models that introduce a Yukawa-like modification to the Newtonian potential thus modifying the dynamics of particles. Using the geodesics equations, we have illustrated the amplitude of these modifications. First, we have integrated numerically the equations of motion showing the orbital precession of a particle around a massive object. Second, we have computed an analytic expression for the periastron advance of systems having their semimajor axis much shorter than the Yukawa-scale length. Finally, we have extended our results to the case of a binary system composed of two massive objects. Our analysis provides a powerful tool to obtain constraints on the underlying theory of gravity using current and forthcoming data sets.

[1]  kendine özgü,et al.  06 , 2018, Memoriam.

[2]  R. Lazkoz,et al.  Analysis of the Yukawa gravitational potential in f(R) gravity. I. Semiclassical periastron advance , 2018, Physical Review D.

[3]  T. Broadhurst,et al.  Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays , 2018 .

[4]  P. Jovanović,et al.  Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvement expectations for graviton mass bounds , 2018, 1801.04679.

[5]  I. Lopes,et al.  Dark matter admixed strange quark stars in the Starobinsky model , 2018, 1801.05031.

[6]  I. Lopes,et al.  Dark stars in Starobinsky’s model , 2018, 1801.03387.

[7]  L. Rezzolla,et al.  Test-particle dynamics in general spherically symmetric black hole spacetimes , 2017, 1712.00265.

[8]  M. Bianchi,et al.  Proceedings, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes) , 2017 .

[9]  Xing Zhang,et al.  Constraining $f(R)$ gravity in solar system, cosmology and binary pulsar systems , 2017, 1711.08991.

[10]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[11]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[12]  A. Capolupo Quantum vacuum, dark matter, dark energy and spontaneous supersymmetry breaking , 2017, 1708.08769.

[13]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[14]  Tzihong Chiueh,et al.  Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing. , 2017, Physical review letters.

[15]  A. Buonanno,et al.  Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors , 2017, 1704.07561.

[16]  S. Capozziello,et al.  Evolution of gravitons in accelerating cosmologies: The case of extended gravity , 2017, 1702.05517.

[17]  L. Lombriser,et al.  Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure , 2016, 1602.07670.

[18]  O. Porth,et al.  Constraining alternative theories of gravity using GW150914 and GW151226 , 2016, 1611.05766.

[19]  A. Capolupo Dark Matter and Dark Energy Induced by Condensates , 2016, 1608.05407.

[20]  I. D. Martino f(R) -gravity model of the Sunyaev-Zeldovich profile of the Coma cluster compatible with Planck data , 2016, 1605.08223.

[21]  D. Kocevski,et al.  Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data , 2016, 1605.03053.

[22]  Alan E. E. Rogers,et al.  PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES , 2016, 1602.05527.

[23]  Sabine Fenstermacher Handbook Of Pulsar Astronomy , 2016 .

[24]  I. del C. Santiago-Bautista,et al.  Astrophysics and Space Science Proceedings , 2016 .

[25]  P. Ho,et al.  Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.

[26]  L. Lombriser,et al.  Breaking a dark degeneracy with gravitational waves , 2015, 1509.08458.

[27]  S. Capozziello,et al.  Constraining $f(R)$ Gravity by the Large-Scale Structure , 2015, 1507.06123.

[28]  Alan E. E. Rogers,et al.  230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.

[29]  L. Rezzolla,et al.  A coordinate-independent characterization of a black hole shadow , 2015, 1503.09054.

[30]  R. G'enova-Santos,et al.  CONSTRAINING THE REDSHIFT EVOLUTION OF THE COSMIC MICROWAVE BACKGROUND BLACKBODY TEMPERATURE WITH PLANCK DATA , 2015, 1502.06707.

[31]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[32]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[33]  I. D. Martino,et al.  Probing the physical and mathematical structure of f(R)-gravity by PSR J0348 + 0432 , 2013, 1310.0711.

[34]  J. Antoniadis Gravitational Radiation from Compact Binary Pulsars , 2014, 1407.3404.

[35]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[36]  D. Lorimer,et al.  The Galactic Centre pulsar population. , 2013, 1311.4846.

[37]  S. Capozziello,et al.  Constraining f(R) gravity with Planck data on galaxy cluster profiles , 2013, 1310.0693.

[38]  P. Jovanović,et al.  Constraining the range of Yukawa gravity interaction from S2 star orbits II: bounds on graviton mass , 2016, 1605.00913.

[39]  R. P. Eatough,et al.  A strong magnetic field around the supermassive black hole at the centre of the Galaxy , 2013, Nature.

[40]  I. D. Martino,et al.  Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars , 2013, 1302.0220.

[41]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[42]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[43]  S. Capozziello,et al.  The dark matter problem from f(R) gravity viewpoint , 2012 .

[44]  L. Milano,et al.  Testing gravitational theories using eccentric eclipsing detached binaries , 2012, 1207.5410.

[45]  A. Zakharov,et al.  Constraints onRngravity from precession of orbits of S2-like stars , 2012, 1206.0851.

[46]  P. Freire,et al.  The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.

[47]  Testing Yukawa-like Potentials from f(R)-gravity in Elliptical Galaxies , 2012, 1201.3363.

[48]  N. Wex,et al.  PROSPECTS FOR PROBING THE SPACETIME OF Sgr A* WITH PULSARS , 2011, 1112.2151.

[49]  Lorenzo Iorio,et al.  Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology , 2011, 1109.6249.

[50]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[51]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[52]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[53]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[54]  Badr N. Alsuwaidan,et al.  Gravity Probe B: final results of a space experiment to test general relativity. , 2011, Physical review letters.

[55]  J. Gair,et al.  Linearized f ( R ) gravity: Gravitational radiation and Solar System tests , 2011, 1104.0819.

[56]  S. Capozziello,et al.  Systematic biases on galaxy haloes parameters from Yukawa‐like gravitational potentials , 2011, 1102.0916.

[57]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[58]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[59]  D. Merritt,et al.  TOWARD RELATIVISTIC ORBIT FITTING OF GALACTIC CENTER STARS AND PULSARS , 2010, 1007.0007.

[60]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[61]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[62]  S. Capozziello,et al.  Massive, massless and ghost modes of gravitational waves from higher-order gravity , 2009, 0911.3094.

[63]  J. Khoury,et al.  N-body simulations of DGP and degravitation theories , 2009, 0903.1292.

[64]  S. Capozziello,et al.  Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity , 2008, 0812.1348.

[65]  S. Capozziello,et al.  Modelling clusters of galaxies by f(R)-gravity , 2008, 0809.1882.

[66]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[67]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[68]  S. Capozziello,et al.  From Dark Energy & Dark Matter to Dark Metric , 2008, 0805.3642.

[69]  S. Capozziello,et al.  Spherical symmetry in f(R)-gravity , 2007, 0709.0891.

[70]  S. Capozziello,et al.  Spherically symmetric solutions in f(R) gravity via the Noether symmetry approach , 2007, gr-qc/0703067.

[71]  Zhi-qiang Shen,et al.  Black hole shadow image and visibility analysis of Sagittarius A , 2007, astro-ph/0703254.

[72]  L. Iorio First preliminary tests of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force from planetary data , 2005, gr-qc/0507041.

[73]  L. Iorio CAN SOLAR SYSTEM OBSERVATIONS TELL US SOMETHING ABOUT THE COSMOLOGICAL CONSTANT , 2005, gr-qc/0511137.

[74]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[75]  L. Iorio On the effects of Dvali–Gabadadze–Porrati braneworld gravity on the orbital motion of a test particle , 2005, gr-qc/0504053.

[76]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[77]  J. Cordes,et al.  Strong-field tests of gravity using pulsars and black holes , 2004 .

[78]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[79]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[80]  Alexander S. Szalay,et al.  Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts , 2004, astro-ph/0401249.

[81]  J. Khoury,et al.  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[82]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[83]  I. Stairs Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.

[84]  R. Abuter,et al.  A Geometric Determination of the Distance to the Galactic Center , 2003, astro-ph/0306220.

[85]  L. Iorio Constraints on a Yukawa gravitational potential from laser data of LAGEOS satellites , 2002, gr-qc/0201081.

[86]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[87]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[88]  Einstein Frame or Jordan Frame? , 1999, astro-ph/9910176.

[89]  J. C. Lee,et al.  Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.

[90]  Sokolowski,et al.  Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field. , 1994, Physical review. D, Particles and fields.

[91]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[92]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[93]  D. Raine,et al.  Quantum Gravity 2: A Second Oxford Symposium , 1982 .

[94]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[95]  H. Friedman,et al.  Interpretation of X-Ray Photograph of the Sun. , 1963 .

[96]  Phillip Capper The Proceedings , 2020, International Arbitration: A Handbook.