Understanding hydration effects on mechanical and impacting properties of turtle shell.

[1]  Z. Zhang,et al.  Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales. , 2016, Journal of the mechanical behavior of biomedical materials.

[2]  Z. Zhang,et al.  Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation. , 2016, Journal of the mechanical behavior of biomedical materials.

[3]  C. Greiner,et al.  Bio-inspired scale-like surface textures and their tribological properties , 2015, Bioinspiration & biomimetics.

[4]  H. Wagner,et al.  Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues , 2015, Bioinspiration & Biomimetics.

[5]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature materials.

[6]  H. Wagner,et al.  Bending mechanics of the red-eared slider turtle carapace. , 2014, Journal of the mechanical behavior of biomedical materials.

[7]  Wen Yang,et al.  Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. , 2013, Acta biomaterialia.

[8]  Wen Yang,et al.  Natural Flexible Dermal Armor , 2013, Advanced materials.

[9]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[10]  R Damiens,et al.  Compressive behavior of a turtle's shell: experiment, modeling, and simulation. , 2012, Journal of the mechanical behavior of biomedical materials.

[11]  A. Keshri,et al.  Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell. , 2011, Journal of the mechanical behavior of biomedical materials.

[12]  S. Patek,et al.  Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp's telson , 2010, Journal of Experimental Biology.

[13]  D. Dudek,et al.  Designed biomaterials to mimic the mechanical properties of muscles , 2010, Nature.

[14]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[15]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[16]  Jie Zhao,et al.  The relationship between mechanical properties and crossed-lamellar structure of mollusk shells , 2008 .

[17]  S. Wroe,et al.  Bite forces and evolutionary adaptations to feeding ecology in carnivores. , 2007, Ecology.

[18]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[19]  Yasuaki Seki,et al.  Structural biological composites: An overview , 2006 .

[20]  L. Alibardi,et al.  Immunolocalization and characterization of beta-keratins in growing epidermis of chelonians. , 2006, Tissue & cell.

[21]  S. Mann,et al.  Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. , 2003, Journal of structural biology.

[22]  M. Burghammer,et al.  Twisted plywood pattern of collagen fibrils in teleost scales: an X-ray diffraction investigation. , 2001, Journal of structural biology.

[23]  S. Gilbert,et al.  Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution , 2001, Evolution & development.

[24]  K. Vecchio,et al.  Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells , 2001 .

[25]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[26]  Akon Higuchi,et al.  D.s.c. investigation of the states of water in poly(vinyl alcohol)membranes , 1985 .