Temporal changes in groundwater quality of the Saloum coastal aquifer

Abstract Study region Groundwater in the southern part of the Saloum Basin in Senegal. Study focus The Saloum estuary is a hypersaline and ‘inverse’ estuary where the salinity of river water increases in the upstream direction. This region is problematic in that due to the underlain superficial Continental Terminal aquifer bordered by the hypersaline estuary constitutes the unique fresh groundwater reservoir for water supply for its estimated 466,000 residents living in 18 rural districts (belonging to the regions of Fatick, Kaolack and Kaffrine). This is of high value given that the deep Maastrichtian aquifer (200–300 m depth) is saline. This study aims to describe and understand temporal changes in the chemical and isotopic compositions of groundwater, the geochemical processes and especially the groundwater salinization. New hydrological insights for the region The analytical data were discriminated into 3 groups on the basis of the water types. Na-Cl, Ca-Cl and Ca-SO4 rich waters derived from saline water intrusion at the vicinity of the Saloum River accompanied by ion exchange reactions and pollution dominate the first group. The second group located mainly in the centre and eastern parts of the region is featured fresh groundwater of Ca-HCO3 derived from calcite dissolution reactions. The third group of Na-HCO3 type and less mineralized indicates freshening processes by recently infiltrating rainwaters. Slight seasonal chemical variations are observed due to new infiltrating water reaching the water table. High variation in rainfall between the 2 reference years (2003 and 2012) also changes chemical patterns in the groundwater. Chemical evolution of the groundwater is geographically observed and is due to a combination of dilution by recharge, anthropic contamination and seawater intrusion. The results of environmental isotopes (δ18O, δ2H) compared with the local meteoric line indicate that the groundwater has been affected by evaporation processes before and during infiltration. The results also clearly indicate mixing with saltwater and an evolution towards relative freshening between 2003 and 2012 in some wells near the Saloum River.

[1]  Luis A. Garcia,et al.  Using neural networks for parameter estimation in ground water , 2006 .

[2]  A. Faye,et al.  Hydrogeochemistry of the Saloum (Senegal) superficial coastal aquifer , 2003 .

[3]  Fernando Bação,et al.  Exploratory data analysis and clustering of multivariate spatial hydrogeological data by means of GEO3DSOM, a variant of Kohonen's Self-Organizing Map , 2006 .

[4]  J. Lebigre,et al.  ETUDE D'UNE SEQUENCE MANGROVE-TANNE EN MILIEU EQUATORIAL, BAIE DE LA MONDAH (GABON) , 1984 .

[5]  W. Edmunds,et al.  Estimating the spatial variability of groundwater recharge in the Sahel using chloride , 1994 .

[6]  P. Maloszewski,et al.  Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. , 2005, The Science of the total environment.

[7]  Yoon-Seok Timothy Hong,et al.  Intelligent characterisation and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network , 2001 .

[8]  V. Mikhailov,et al.  Hypersalinization of river estuaries in West Africa , 2008 .

[9]  K. Rogers,et al.  Baseline geochemical characterisation of a vulnerable tropical karstic aquifer; Lifou, New Caledonia , 2016 .

[10]  G. Favreau,et al.  Une dépression piézométrique naturelle en hausse au sahel (Sud-Ouest du Niger) , 2002 .

[11]  J. Molson,et al.  Groundwater geochemistry of the Outaouais Region (Québec, Canada): a regional-scale study , 2015, Hydrogeology Journal.

[12]  A. Vengosh,et al.  Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean Coast of Israel , 1999 .

[13]  Abdou Ali,et al.  Recent trends in the Central and Western Sahel rainfall regime (1990–2007) , 2009 .

[14]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[15]  J. Tellam,et al.  Pollution-related acidification in the urban aquifer, Birmingham, UK , 1992 .

[16]  Arthur M. Piper,et al.  A graphic procedure in the geochemical interpretation of water-analyses , 1944 .

[17]  R. Malou,et al.  Impacts of climate change on groundwater recharge and salinization of groundwater resources in Senegal. , 2009 .

[18]  D. Moctar,et al.  Evaluation of Water Resources Quality in Sabodala Gold Mining Region and Its Surrounding Area (Senegal) , 2015 .

[19]  C. Appelo,et al.  Geochemistry, groundwater and pollution , 1993 .

[20]  J. Barusseau,et al.  Evidence of dynamics reversal in tropical estuaries, geomorphological and sedimentological consequences (Salum and Casamance Rivers, Senegal) , 1985 .

[21]  S. Faye,et al.  The groundwater geochemistry of the Saloum delta aquifer: Importance of silicate weathering, recharge and mixing processes , 2010 .

[22]  G. Conrad,et al.  Le ‘continental terminal’, sa place dans l'évolution géodynamique du bassin sénégalo-mauritanien durant le Cénozoïque , 1987 .

[23]  Lazhar Belkhiri,et al.  Geochemical evolution of groundwater in an alluvial aquifer: Case of El Eulma aquifer, East Algeria , 2012 .

[24]  Teuvo Kohonen,et al.  An Overview of SOM Literature , 1995 .

[25]  M. Caetano,et al.  Combined Uses of Supervised Classification and Normalized Difference Vegetation Index Techniques to Monitor Land Degradation in the Saloum Saline Estuary System , 2014 .

[26]  Mohamed Ahmed,et al.  Geophysical, remote sensing, GIS, and isotopic applications for a better understanding of the structural controls on groundwater flow in the Mojave Desert, California , 2015 .

[27]  M. Blesa,et al.  Geochemistry of groundwater in the alluvial plain of Tucumán province, Argentina , 2001 .

[28]  A. Mercado The Use of Hydrogeochemical Patterns in Carbonate Sand and Sandstone Aquifers to Identify Intrusion and Flushing of Saline Water , 1985 .

[29]  Kwang-Sik Lee,et al.  Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea , 2003 .

[30]  J. Pagès,et al.  Rainfall and salinity of a Sahelian estuary between 1927 and 1987 , 1990 .

[31]  A. Vengosh Salinization and Saline Environments , 2014 .

[32]  Meghna Babbar-Sebens,et al.  On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA , 2011, Environmental Monitoring and Assessment.

[33]  T. Coplen Normalization of oxygen and hydrogen isotope data , 1988 .

[34]  M. Magaritz,et al.  The use of Na/Cl ratios to trace solute sources in a semiarid zone , 1981 .

[35]  Keith Turner,et al.  Evaluation of graphical and multivariate statistical methods for classification of water chemistry data , 2002 .

[36]  H. Savenije,et al.  Hypersalinity : a dramatic change in the hydrology of Sahelian estuaries , 1992 .

[37]  J. Turner,et al.  Density‐dependent surface water–groundwater interaction and nutrient discharge in the Swan–Canning Estuary , 2001 .

[38]  Dongmei Han,et al.  Recharge history and controls on groundwater quality in the Yuncheng Basin, north China , 2010 .

[39]  E. Kristensen,et al.  Benthic metabolism and sulfate reduction in a southeast Asian mangrove swamp , 1991 .

[40]  Youssouf Koussoube,et al.  Hydrogéologie des séries sédimentaires de la dépression piézométrique du Gondo (bassin du Sourou) : Burkina Faso / Mali , 2010 .

[41]  A. Hameed,et al.  Isotopic characterization and mass balance reveals groundwater recharge pattern in Chaliyar river basin, Kerala, India , 2015 .

[42]  Dynamic groundwater and salt transport near a tidal, partially penetrating estuary , 2004 .

[43]  E. Wolanski An Evaporation-Driven Salinity Maximum Zone in Australian Tropical Estuaries , 1986 .

[44]  P. Ridd,et al.  Dry Season Salinity Changes in Arid Estuaries Fringed by Mangroves and Saltflats , 2002 .

[45]  J. Hollibaugh,et al.  Seasonally Hypersaline Estuaries in Mediterranean-climate Regions , 1997 .

[46]  A. Rouleau,et al.  Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis , 2015 .

[47]  B. N Kumar,et al.  Experimental Investigations on Groundwater Flow in Coastal Aquifers , 2004 .

[48]  J. Mudry L'analyse discriminante, un puissant moyen de validation des hypothèses hydrogéologiques , 1991 .

[49]  K. Zouari,et al.  Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia) , 2011 .

[50]  J. Jankowski,et al.  Impact of Debris-Flow Deposits on Hydrogeochemical Processes and the Developement of Dryland Salinity in the Yass River Catchment, New South Wales, Australia , 1997 .

[51]  J. Mudry,et al.  Apport de la géologie, de l’hydrogéologie et des isotopes de l’environnement à la connaissance des «nappes en creux» du Grand Yaéré (Nord Cameroun) , 2007 .

[52]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[53]  Donald W. Pritchard,et al.  What is an estuary: Physical Viewpoint , 1967 .