ON THE ORBIT OF EXOPLANET WASP-12b

We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ±+0.007 –0.006) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.

[1]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[2]  K. Rice,et al.  Protostars and Planets V , 2005 .

[3]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[4]  Mercedes Lopez-Morales,et al.  DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.

[5]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[6]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[7]  G. Laughlin,et al.  On the Radii of Extrasolar Giant Planets , 2003 .

[8]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[9]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[10]  S. Poddan'y,et al.  Exoplanet Transit Database. Reduction and processing of the photometric data of exoplanet transits , 2009, 0909.2548.

[11]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[12]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[13]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[14]  Josef Kallrath,et al.  Eclipsing Binary Stars: Modeling and Analysis , 1999 .

[15]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[16]  Joshua N. Winn,et al.  The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b , 2008, 0804.4475.

[17]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[18]  Douglas N. C. Lin,et al.  WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation , 2010, Nature.

[19]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[20]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[21]  Konstantin Batygin,et al.  DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS , 2009, 0907.5019.

[22]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[23]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[24]  Josef Kallrath,et al.  Eclipsing Binary Stars: Modeling and Analysis , 1999 .

[25]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[26]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[27]  Á. Giménez,et al.  A revision of the ephemeris-curve equations for eclipsing binaries with apsidal motion , 1995 .

[28]  John Skilling,et al.  Data Analysis-A Bayesian Tutorial: Second Edition , 2006 .

[29]  R. Mardling,et al.  The determination of planetary structure in tidally relaxed inclined systems , 2010, 1001.4079.

[30]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[31]  Darin Ragozzine,et al.  PROBING THE INTERIORS OF VERY HOT JUPITERS USING TRANSIT LIGHT CURVES , 2008, Proceedings of the International Astronomical Union.

[32]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[33]  Steven Soter,et al.  Q in the solar system , 1966 .

[34]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[35]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .