High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.

Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection-fluorescence optical tweezers, or "fleezers"-is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.

[1]  Christoph F Schmidt,et al.  Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. , 2004, The journal of physical chemistry. B.

[2]  D. Herschlag,et al.  Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Woodside,et al.  Probing the structural dynamics of proteins and nucleic acids with optical tweezers , 2015, Current Opinion in Structural Biology.

[4]  Carlos Bustamante,et al.  Inter-Subunit Coordination in a Homomeric Ring-ATPase , 2009, Nature.

[5]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[6]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[7]  M. Bennink,et al.  Dependence of silicon position-detector bandwidth on wavelength, power, and bias. , 2006, Optics Letters.

[8]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[9]  I. Tinoco,et al.  Single–Base Pair Unwinding and Asynchronous RNA Release by the Hepatitis C Virus NS3 Helicase , 2011, Science.

[10]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[11]  T. Ha,et al.  Direct imaging of single UvrD helicase dynamics on long single-stranded DNA , 2013, Nature Communications.

[12]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Y. Chemla,et al.  Sequence-dependent base pair stepping dynamics in XPD helicase unwinding , 2013, eLife.

[14]  Matthew J Lang,et al.  Interlaced optical force-fluorescence measurements for single molecule biophysics. , 2006, Biophysical journal.

[15]  D. Haltrich,et al.  Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments , 2012, ACS nano.

[16]  T. Ha,et al.  Direct observation of structure-function relationship in a nucleic acid–processing enzyme , 2015, Science.

[17]  S. Kowalczykowski,et al.  Visualizing protein-DNA interactions at the single-molecule level. , 2010, Current opinion in chemical biology.

[18]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[19]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[20]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[21]  Wei Cheng,et al.  Revisiting the Central Dogma One Molecule at a Time , 2011, Cell.

[22]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[23]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[24]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[25]  Y. Chemla,et al.  Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways , 2015, eLife.

[26]  E. Peterman,et al.  Optical tweezers analysis of DNA-protein complexes. , 2014, Chemical reviews.

[27]  G. Wuite,et al.  Introduction to optical tweezers: background, system designs, and commercial solutions. , 2011, Methods in molecular biology.

[28]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[29]  Piero R Bianco,et al.  Laminar flow cells for single-molecule studies of DNA-protein interactions , 2008, Nature Methods.

[30]  C. Bustamante,et al.  An integrated laser trap/flow control video microscope for the study of single biomolecules. , 2000, Biophysical journal.

[31]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[32]  A. Gennerich,et al.  An improved optical tweezers assay for measuring the force generation of single kinesin molecules. , 2014, Methods in molecular biology.

[33]  Gijs J. L. Wuite,et al.  See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins , 2008, Nucleic acids research.

[34]  T. Ha,et al.  Ultrahigh-resolution optical trap with single-fluorophore sensitivity , 2011, Nature Methods.

[35]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[36]  Young-Bum Kim,et al.  Corrigendum: Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway , 2013 .

[37]  Yann R Chemla,et al.  Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. , 2009, Biophysical journal.

[38]  Carlo A. Furia,et al.  User manual , 2023, International Transport Forum Policy Papers.

[39]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[40]  T. Odijk Stiff chains and filaments under tension , 1995 .

[41]  Scott A. Williams,et al.  Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa , 2015, eLife.

[42]  Yann R Chemla,et al.  Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. , 2010, Physical chemistry chemical physics : PCCP.

[43]  Taekjip Ha,et al.  Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase , 2002, Nature.

[44]  Steven M Block,et al.  Reconstructing folding energy landscapes by single-molecule force spectroscopy. , 2014, Annual review of biophysics.

[45]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[46]  S. Block,et al.  Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. , 2011, Molecular cell.

[47]  K. Schulten,et al.  DNA target sequence identification mechanism for dimer-active protein complexes , 2012, Nucleic acids research.

[48]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[49]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[50]  Ana I. Domingos,et al.  Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar , 2013, eLife.

[51]  Ido Golding,et al.  Chemotactic adaptation kinetics of individual Escherichia coli cells , 2012, Proceedings of the National Academy of Sciences.