Simple Recursive Games

We define the class of "simple recursive games". A simple recursive game is defined as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving simple recursive games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem.

[1]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[2]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[3]  Nicolas Vieille,et al.  Two-player stochastic games II: The case of recursive games , 2000 .

[4]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[5]  Manuel Blum,et al.  Linear time bounds for median computations , 1972, STOC.

[6]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[7]  Henri E. Bal,et al.  Solving awari with parallel retrograde analysis , 2003, Computer.

[8]  Alan W. McMasters,et al.  Optimal interdiction of a supply network , 1970 .

[9]  Vladimir Gurvich,et al.  On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction , 2008, Theory of Computing Systems.

[10]  A. Prasad Sistla,et al.  On model checking for the µ-calculus and its fragments , 2001, Theor. Comput. Sci..

[11]  N. Vieille Two-player stochastic games I: A reduction , 2000 .

[12]  Robert E. Tarjan,et al.  Algorithms for Two Bottleneck Optimization Problems , 1988, J. Algorithms.

[13]  Ernst A. Heinz Scalable search in computer chess: algorithmic enhancements and experiments at high search depths , 1999 .

[14]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[15]  Abraham P. Punnen A fast algorithm for a class of bottleneck problems , 2005, Computing.

[16]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[17]  Ken Thompson,et al.  Retrograde Analysis of Certain Endgames , 1986, J. Int. Comput. Games Assoc..

[18]  H. Bal,et al.  Solving the Game of Awari using Parallel Retrograde Analysis , 2003 .

[19]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..

[20]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .