Reduced Order Suboptimal Control Design for a Class of Nonlinear Distributed Parameter Systems Using POD and θ-D Techniques

A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.

[1]  Ricardo C. H. del Rosario,et al.  Reduced-order model feedback control design: numerical implementation in a thin shell model , 2000, IEEE Trans. Autom. Control..

[2]  Randal W. Beard,et al.  Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation , 1997, Autom..

[3]  W. Garrard,et al.  Nonlinear feedback control of highly manoeuvrable aircraft , 1992 .

[4]  Z. Qu,et al.  A new suboptimal control design for cascaded non‐linear systems , 2002 .

[5]  Andrew P. Sage,et al.  Gradient and Quasi-linearization Computational Techniques for Distributed Parameter Systems , 1967 .

[6]  N. J. Krikelis,et al.  Optimal feedback control of non-linear systems , 1992 .

[7]  George N. Saridis,et al.  An Approximation Theory of Optimal Control for Trainable Manipulators , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Andrew G. Alleyne,et al.  Design of a class of nonlinear controllers via state dependent Riccati equations , 2004, IEEE Transactions on Control Systems Technology.

[9]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[10]  Ibrahim Sadek,et al.  Optimal control of a parabolic distributed parameter system via orthogonal polynomials , 1998 .

[11]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[12]  Ming Xin,et al.  Nonlinear Missile Autopilot Design with theta - D Technique , 2004 .

[13]  J. Cloutier,et al.  Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method , 1998 .

[14]  William L. Garrard,et al.  Design of nonlinear automatic flight control systems , 1977, Autom..

[15]  A. F. Mills Basic Heat and Mass Transfer , 1999 .

[16]  J. Burns,et al.  A Reduced Basis Approach to the Design of Low-Order Feedback Controllers for Nonlinear Continuous Systems , 1998 .

[17]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[18]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[19]  Ming Xin,et al.  A new method for suboptimal control of a class of nonlinear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[20]  Sahjendra N. Singh,et al.  Control of Unsteady Aeroelastic System via State-Dependent Riccati Equation Method , 2005 .