Specified precision polynomial root isolation is in NC

Given a polynomial p(z) od degree n with integer coefficients, whose absolute values are bounded above by 2/sup m/, and a specified integer mu , it is shown that the problem of determining all roots of p with error less than 2/sup - mu / is in the parallel complexity class NC. To do this, an algorithm that runs on at most POLY(n+m+ mu ) processors with a parallel time complexity of O(log/sup 3/(n+m+ mu )) is constructed. This algorithm extends the algorithm of M. Ben-Or et al. (SIAM J. Comput., vol.17, p.1081-92, 1988) by removing the severe restriction that all the roots of p(z) should be real.<<ETX>>

[1]  Victor Y. Pan,et al.  Complexity of Parallel Matrix Computations , 1987, Theor. Comput. Sci..

[2]  L. Csanky,et al.  Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..

[3]  James Renegar On the Worst-Case Arithmetic Complexity of Approximating Zeros of Systems of Polynomials , 1989, SIAM J. Comput..

[4]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[5]  James Renegar,et al.  On the Computational Complexity of Approximating Solutions for Real Algebraic Formulae , 1992, SIAM J. Comput..

[6]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[7]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[8]  Victor Y. Pan,et al.  Parallel Evaluation of the Determinant and of the Inverse of a Matrix , 1989, Inf. Process. Lett..

[9]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[10]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[11]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[13]  James Renegar,et al.  A faster PSPACE algorithm for deciding the existential theory of the reals , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[14]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[15]  James Renegar,et al.  On the cost of approximating all roots of a complex polynomial , 1985, Math. Program..

[16]  Ephraim Feig,et al.  A Fast Parallel Algorithm for Determining all Roots of a Polynomial with Real Roots , 1988, SIAM J. Comput..

[17]  George E. Collins Polynomial Remainder Sequences and Determinants , 1966 .

[18]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[19]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[20]  Victor Y. Pan,et al.  Efficient parallel solution of linear systems , 1985, STOC '85.

[21]  Michael Ben-Or,et al.  Simple algorithms for approximating all roots of a polynomial with real roots , 1990, J. Complex..

[22]  Joachim von zur Gathen Representations and Parallel Computations for Rational Functions , 1986, SIAM J. Comput..

[23]  Joachim von zur Gathen Representations of Rational Functions , 1983, FOCS.

[24]  Victor Y. Pan Fast and efficient algorithms for sequential and parallel evaluation of polynomial zeros and of matrix polynomials , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[25]  Prasoon Tiwari The communication complexity of distributed computing and a parallel algorithm for polynomial roots , 1986 .

[26]  W. Burnside,et al.  Theory of equations , 1886 .

[27]  W. Rudin Real and complex analysis , 1968 .

[28]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[29]  M. Marden Geometry of Polynomials , 1970 .

[30]  Ephraim Feig,et al.  A fast parallel algorithm for determining all roots of a polynomial with real roots , 1986, STOC '86.

[31]  Erich Kaltofen Effective Noether irreducibility forms and applications , 1991, STOC '91.

[32]  J. Hopcroft,et al.  Fast parallel matrix and GCD computations , 1982, FOCS 1982.