4% Efficient Polymer Solar Cells on Paper Substrates

Lightweight, biodegradable, and inexpensive materials are desirable to enable low-cost photovoltaics. Paper fulfills these requirements and is compatible with standard roll-to-roll printing processes. Here we report 4% efficient organic solar cells fabricated on paper substrates with a zinc-coating acting as the back contact and evaporated MoO3/Ag/MoO3 semitransparent top electrodes. We demonstrate that the rough surface of paper does not preclude its use in high-efficiency organic photovoltaics.

[1]  Elena P. Ivanova,et al.  Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate) , 2012 .

[2]  P. Denk,et al.  Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer , 2014, Organic electronics.

[3]  Miles C. Barr,et al.  Top‐illuminated Organic Photovoltaics on a Variety of Opaque Substrates with Vapor‐printed Poly(3,4‐ethylenedioxythiophene) Top Electrodes and MoO3 Buffer Layer , 2012 .

[4]  Takao Someya,et al.  Organic Electronics on Banknotes , 2011, Advanced materials.

[5]  Mihai Irimia-Vladu,et al.  Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors , 2013 .

[6]  Hui Jin,et al.  Efficient, Large Area ITO‐and‐PEDOT‐free Organic Solar Cell Sub‐modules , 2012, Advanced materials.

[7]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[8]  Suren A. Gevorgyan,et al.  Degradation patterns in water and oxygen of an inverted polymer solar cell. , 2010, Journal of the American Chemical Society.

[9]  A. J. Steckl,et al.  Circuits on cellulose , 2013, IEEE Spectrum.

[10]  A. Heeger,et al.  High‐Efficiency Polymer Solar Cells Enhanced by Solvent Treatment , 2013, Advanced materials.

[11]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[12]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[13]  J. Weiss Parameters that influence the barrier properties of metallized polyester and polypropylene films , 1991 .

[14]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[15]  Kukjoo Kim,et al.  Simultaneous synthesis and patterning of graphene electrodes by reactive inkjet printing , 2014 .

[16]  A. Steckl,et al.  Pentacene organic thin-film transistors on flexible paper and glass substrates , 2014, Nanotechnology.

[17]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[18]  Miles C. Barr,et al.  Paper Electronics: Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper (Adv. Mater. 31/2011) , 2011 .

[19]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[20]  Moazzam Ali,et al.  Printed Piezoelectric Energy Harvesting Device , 2014 .

[21]  Arved C. Hübler,et al.  Printed Paper Photovoltaic Cells , 2011 .

[22]  Jason P. Rolland,et al.  Paper as a novel material platform for devices , 2013 .

[23]  Frederik C. Krebs,et al.  Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide , 2009 .