Power extraction efficiency improvement of a fully-activated flapping foil: With the help of an auxiliary rotating foil

The power extraction efficiency improvement of a fully-activated flapping foil with the help of an auxiliary rotating foil is numerically examined in this work. A NACA0015 airfoil is placed in a two-dimensional laminar flow and synchronously performs the imposed pitching and plunging motions. An auxiliary smaller foil, which rotates about its center, is arranged below the flapping foil. As a consequence, the vortex interaction between the flapping foil and the rotating foil occurs. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between the flapping foil and the auxiliary foil, the phase difference between the rotating motion and the flapping motion as well as the frequency of flapping motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency of power extraction for the flapping foil with an auxiliary device can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging contribution, which is caused by the increased lift force owing to the vortex interaction, directly helps the efficiency improvement.