Design and Control of Integrated Systems for Hydrogen Production and Power Generation

University of Minnesota Ph.D. dissertation. November 2013. Major: Chemical Engineering. Advisor: Prodromos Daoutidis. 1 computer file (PDF); xi, 121 pages.

[1]  Enrico Drioli,et al.  Medium/high temperature water gas shift reaction in a Pd–Ag membrane reactor: an experimental investigation , 2012 .

[2]  Timo Kivisaari,et al.  Conceptual study of a 250 kW planar SOFC system for CHP application , 2004 .

[3]  Michael P. Harold,et al.  Autothermal reforming of methanol: Experiments and modeling , 2007 .

[4]  Nikolaos Kazantzis,et al.  Economic assessment of inherently safe membrane reactor technology options integrated into IGCC power plants , 2012 .

[5]  M. H. Nehrir,et al.  A Physically Based Dynamic Model for Solid Oxide Fuel Cells , 2007 .

[6]  David J. Bents High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage , 1987 .

[7]  Marco Sorrentino,et al.  A hierarchical modeling approach to the simulation and control of planar solid oxide fuel cells , 2008 .

[8]  Masoud Soroush,et al.  Steady-state multiplicity in a solid oxide fuel cell: Practical considerations , 2012 .

[9]  Xianguo Li Principles of fuel cells , 2005 .

[10]  Amornchai Arpornwichanop,et al.  Integration of solid oxide fuel cell and palladium membrane reactor: Technical and economic analysis , 2009 .

[11]  James F. Miller,et al.  Challenges for fuel cells in transport applications , 2000 .

[12]  A. Dicks Advances in catalysts for internal reforming in high temperature fuel cells , 1998 .

[13]  L. Kershenbaum,et al.  Modelling of an indirect internal reforming solid oxide fuel cell , 2002 .

[14]  Alex C. Hoffmann,et al.  Numerical analysis of a planar anode-supported SOFC with composite electrodes , 2009 .

[15]  Handa Xi,et al.  Dynamic modeling of a Solid Oxide Fuel Cell system for control design , 2010, Proceedings of the 2010 American Control Conference.

[16]  Faryar Jabbari,et al.  Novel solid oxide fuel cell system controller for rapid load following , 2007 .

[17]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[18]  H. Ho,et al.  Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant , 2002 .

[19]  Ibrahim Dincer,et al.  Hybrid solar–fuel cell combined heat and power systems for residential applications: Energy and exergy analyses , 2013 .

[20]  Biao Huang,et al.  Control relevant modeling of planer solid oxide fuel cell system , 2007 .

[21]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design , 2004 .

[22]  T. Nenoff,et al.  Membranes for hydrogen separation. , 2007, Chemical reviews.

[23]  C. Paparizos,et al.  Production of synthesis gas , 1993 .

[24]  K. Ahmed,et al.  Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells , 2000 .

[25]  Anne Hampson,et al.  Combined Heat and Power: Enabling Resilient Energy Infrastructure for Critical Facilities , 2013 .

[26]  N. Demirdöven,et al.  Hybrid Cars Now, Fuel Cell Cars Later , 2004, Science.

[27]  Enrico Drioli,et al.  Simulation study of water gas shift reaction in a membrane reactor , 2007 .

[28]  Werner Lehnert,et al.  Modelling of gas transport phenomena in SOFC anodes , 2000 .

[29]  Chunshan Song,et al.  Fuel processing for low-temperature and high-temperature fuel cells , 2002 .

[30]  Ruzhu Wang,et al.  COMBINED COOLING, HEATING AND POWER: A REVIEW , 2006 .

[31]  Michael P. Harold,et al.  Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems , 2004 .

[32]  Robert J. Kee,et al.  Solid Oxide Fuel Cells: Operating Principles, Current Challenges, and the Role of Syngas , 2008 .

[33]  Mario Amelio,et al.  Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis , 2007 .

[34]  Jam Hans Kuipers,et al.  Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen , 2006 .

[35]  Tae Seok Lee,et al.  Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling , 2011 .

[36]  Robert J. Braun,et al.  Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications , 2002 .

[37]  A. Chaisantikulwat,et al.  Dynamic modelling and control of planar anode-supported solid oxide fuel cell , 2008, Comput. Chem. Eng..

[38]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[39]  Akira Endo,et al.  Simulation of a Porous Ceramic Membrane Reactor for Hydrogen Production , 2005 .

[40]  Andrew Dicks,et al.  Hydrogen generation from natural gas for the fuel cell systems of tomorrow , 1996 .

[41]  M. Sahimi,et al.  Ultra-pure hydrogen production from reformate mixtures using a palladium membrane reactor system , 2012 .

[42]  R. Ramachandran,et al.  An overview of industrial uses of hydrogen , 1998 .

[43]  Andrzej Stankiewicz,et al.  Opportunities and challenges for process control in process intensification , 2012 .

[44]  N. Kazantzis,et al.  Process safety aspects in water-gas-shift (WGS) membrane reactors used for pure hydrogen production , 2011 .

[45]  Donald J. Chmielewski,et al.  Distributed Feed Design for SOFCs with Internal Reforming , 2004 .

[46]  Petar Sabev Varbanov,et al.  Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies , 2008 .

[47]  Bjarne A. Foss,et al.  Modeling and control of a SOFC-GT-based autonomous power system , 2007 .

[48]  Fabian Mueller,et al.  On the intrinsic transient capability and limitations of solid oxide fuel cell systems , 2009 .

[49]  Masoud Soroush,et al.  Mathematical Modeling, Steady-State and Dynamic Behavior, and Control of Fuel Cells: A Review† , 2010 .

[50]  Ian S. Metcalfe,et al.  Energy integration strategies for solid oxide fuel cell systems , 2006 .

[51]  Jing Sun,et al.  Optimization and load-following characteristics of 5kw-class tubular solid oxide fuel cell/gas turbine hybrid systems , 2010, Proceedings of the 2010 American Control Conference.

[52]  S. Singhal Solid Oxide Fuel Cells , 2003 .

[53]  K. Raghavan,et al.  Membrane reactors for fuel cell quality hydrogen through WGSR Review of their status, challenges a , 2011 .

[54]  J. Sadhukhan,et al.  Energy Integration and Analysis of Solid Oxide Fuel Cell Based Microcombined Heat and Power Systems and Other Renewable Systems Using Biomass Waste Derived Syngas , 2010 .

[55]  Panini K. Kolavennu,et al.  Analysis and Control of an In Situ Hydrogen Generation and Fuel Cell Power System for Automotive Applications , 2006 .

[56]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[57]  Pierluigi Leone,et al.  Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design , 2006 .

[58]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[59]  M. De Falco,et al.  Simulation of large-scale membrane reformers by a two-dimensional model , 2007 .

[60]  Marc Melaina,et al.  Design and technoeconomic performance analysis of a 1MW solid oxide fuel cell polygeneration system for combined production of heat, hydrogen, and power , 2012 .

[61]  Nigel P. Brandon,et al.  Hydrogen and fuel cells: Towards a sustainable energy future , 2008 .

[62]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[63]  Wei Chen,et al.  Analysis of total energy system based on solid oxide fuel cell for combined cooling and power applications , 2010 .

[64]  Eric F. May,et al.  The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies , 2012 .

[65]  Thomas A. Adams,et al.  A dynamic two-dimensional heterogeneous model for water gas shift reactors , 2009 .

[66]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[67]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[68]  Robert J. Braun,et al.  Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications , 2006 .

[69]  V. I. Ugursal,et al.  Residential cogeneration systems: Review of the current technology , 2006 .

[70]  Eduardo López,et al.  Theoretical study of a membrane reactor for the water gas shift reaction under nonisothermal conditions , 2009 .

[71]  E. Drioli,et al.  Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for water–gas shift reaction , 2008 .

[72]  Yuyan Shao,et al.  Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges , 2007 .

[73]  G. Froment,et al.  Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics , 1989 .

[74]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[75]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[76]  M Bracht,et al.  Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study , 1997 .

[77]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[78]  J.P.P. Huijsmans,et al.  Intermediate temperature SOFC – a promise for the 21st century , 1998 .

[79]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[80]  Adam Hawkes,et al.  Solid oxide fuel cell micro combined heat and power system operating strategy: Options for provision of residential space and water heating , 2007 .

[81]  Sungwon Hwang,et al.  Heterogeneous catalytic reactor design with optimum temperature profile I: application of catalyst dilution and side-stream distribution , 2004 .

[82]  T. Vincent,et al.  Analysis, Optimization, and Control of Solid-Oxide Fuel Cell Systems , 2012 .

[83]  Panel Intergubernamental sobre Cambio Climático Climate change 2007: Synthesis report , 2007 .

[84]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[85]  T. Veziroglu,et al.  The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet , 2005 .

[86]  B. Linnhoff,et al.  The pinch design method for heat exchanger networks , 1983 .

[87]  Bodo Linnhoff,et al.  A User guide on process integration for the efficient use of energy , 1994 .

[88]  Valerie Eveloy,et al.  Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling , 2012 .

[89]  Francesco Paolo Di Maio,et al.  Optimization of membrane area and catalyst distribution in a permeative-stage membrane reactor for methane steam reforming , 2008 .

[90]  Ricardo Martinez-Botas,et al.  Solid oxide fuel cell/gas turbine trigeneration system for marine applications , 2011 .

[91]  Jitian Han,et al.  Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-gener , 2011 .

[92]  Ruzhu Wang,et al.  A REVIEW OF THERMALLY ACTIVATED COOLING TECHNOLOGIES FOR COMBINED COOLING, HEATING AND POWER SYSTEMS , 2011 .

[93]  L. A. Chick,et al.  Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation , 2012 .

[94]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[95]  Reinhard Madlener,et al.  Combined Heat and Power Generation in Liberalised Markets and a Carbon-Constrained World , 2003 .

[96]  Kari Alanne,et al.  Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making , 2004 .

[97]  A. Basile,et al.  Counter-current membrane reactor for WGS process: Membrane design , 2010 .

[98]  Whitney Colella Implications of electricity liberalization for combined heat and power (CHP) fuel cell systems (FCSs): a case study of the United Kingdom , 2002 .

[99]  Whitney Colella,et al.  Design options for achieving a rapidly variable heat-to-power ratio in a combined heat and power (CHP) fuel cell system (FCS) , 2002 .

[100]  Ashok Rao,et al.  Application of a detailed dimensional solid oxide fuel cell model in integrated gasification fuel ce , 2011 .