Computing the channel capacity and rate-distortion function with two-sided state information

In this correspondence, we present iterative algorithms that numerically compute the capacity-power and rate-distortion functions for coding with two-sided state information. Numerical examples are provided to demonstrate efficiency of our algorithms.

[1]  Abbas El Gamal,et al.  On the capacity of computer memory with defects , 1983, IEEE Trans. Inf. Theory.

[2]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[3]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[4]  J. Wolfowitz The rate distortion function for source coding with side information at the decoder , 1979 .

[5]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[6]  Mung Chiang,et al.  Duality between channel capacity and rate distortion with two-sided state information , 2002, IEEE Trans. Inf. Theory.

[7]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  Gregory W. Wornell,et al.  Quantization index modulation: A class of provably good methods for digital watermarking and information embedding , 2001, IEEE Trans. Inf. Theory.

[10]  Wei Yu,et al.  Blahut-Arimoto algorithms for computing channel capacity and rate-distortion with side information , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[11]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[12]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[13]  Stephen P. Boyd,et al.  Geometric programming duals of channel capacity and rate distortion , 2004, IEEE Transactions on Information Theory.

[14]  Aleksandar Kavcic On the capacity of Markov sources over noisy channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[15]  Claude E. Shannon,et al.  Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..

[16]  Alex J. Grant,et al.  A generalization of Arimoto-Blahut algorithm , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Pascal O. Vontobel,et al.  A generalized Blahut-Arimoto algorithm , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..