Multiple Origins of Neocortex: Contributions of the Dorsal Ventricular Ridge

The uniqueness of mammalian neocortex may ultimately only be clarified with improved understanding of the evolutionary origins of cortical structure and cortical functions. Comparative studies of the organization of the nonmammalian and mammalian telencephalon may provide valuable clues for understanding the evolution of neocortex. In the nonmammalian telencephalon, there are neuronal populations which correspond to cell groups in the neocortex of mammals in terms of connections, single unit-responses, and functions. Some of these populations lying within the dorsal ventricular ridge, however, are organized in a non-laminar, rather than laminar fashion. These observations suggest that the emergence of basic “cortical” circuit and laminar organization are distinct evolutionary events that can be differentiated and studied independently in order to understand each of their respective contributions to the cognitive functions of the neocortex. Moreover, in contrast to an argument that many cortical visual areas are derived from a single area by gene duplication (Allman, 1977, in press), the origins of neocortex can be separable into at least the precursors of non-laminar and laminar regions, and thus multiple evolutionary origins of neocortex are proposed.

[1]  B. Kallen II. Embryogenesis of brain nuclei in the chick telencephalon. , 1962, Ergebnisse der Anatomie und Entwicklungsgeschichte.

[2]  A. W. Rogers,et al.  The migration of neuroblasts in the developing cerebral cortex. , 1965, Journal of anatomy.

[3]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[4]  H. Karten,et al.  The afferent connections of the nucleus rotundus in the pigeon. , 1966, Brain research.

[5]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[6]  C. D'amato,et al.  Cell migrations to the isocortex in the rat , 1968, The Anatomical record.

[7]  Harvey J. Karten,et al.  THE ORGANIZATION OF THE AVIAN TELENCEPHALON AND SOME SPECULATIONS ON THE PHYLOGENY OF THE AMNIOTE TELENCEPHALON * , 1969 .

[8]  W. C. Hall,et al.  Evolution of neocortex. , 1969, Science.

[9]  W Hodos,et al.  Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia) , 1970, The Journal of comparative neurology.

[10]  F. Ebner,et al.  Pretectal, tectal, retinal and cortical projections to thalamic nuclei of the opossum in stereotaxic coordinates. , 1970, Brain research.

[11]  G. C. Quarton,et al.  The Neurosciences;: Second study program , 1970 .

[12]  A. Holden,et al.  Response characteristics of pigeon forebrain cells to visual stimulation. , 1971, Vision research.

[13]  M Cuénod,et al.  Electrophysiology of contralateral and ipsilateral visual projections to the Wulst in pigeon (Columba livia). , 1971, The International journal of neuroscience.

[14]  W. C. Hall,et al.  Visual cortex of the grey squirrel (Sciurus carolinensis): Architectonic subdivisions and connections from the visual thalamus , 1972, The Journal of comparative neurology.

[15]  P. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex , 1972, The Journal of comparative neurology.

[16]  S. Ih Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. , 1973 .

[17]  W Hodos,et al.  Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia) , 1973, The Journal of comparative neurology.

[18]  W. C. Hall,et al.  Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis) , 1973, The Journal of comparative neurology.

[19]  H. Karten,et al.  Visual intensity and pattern discrimination after lesions of the thalamofugal visual pathway in pigeons , 1973, The Journal of comparative neurology.

[20]  J. Sprague,et al.  Anatomical organization of pretectal nuclei and tectal laminae in the cat , 1974, The Journal of comparative neurology.

[21]  W. Hodos,et al.  Intensity difference thresholds in pigeons after lesions of the tectofugal and thalamofugal visual pathways. , 1974, Journal of comparative and physiological psychology.

[22]  C. Jarvis Visual discrimination and spatial localization deficits after lesions of the tectofugal pathway in pigeons. , 1974, Brain, behavior and evolution.

[23]  J. Kaas,et al.  A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). , 1974, Brain research.

[24]  W. C. Hall,et al.  The pulvinar nucleus of Galago senegalensis , 1975, The Journal of comparative neurology.

[25]  H. Karten,et al.  Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study , 1976, The Journal of comparative neurology.

[26]  R. Herrnstein,et al.  Natural concepts in pigeons. , 1976, Journal of experimental psychology. Animal behavior processes.

[27]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[28]  B. Frost,et al.  Motion characteristics of single units in the pigeon optic tectum , 1976, Vision Research.

[29]  J. Pettigrew,et al.  Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). , 1976, Science.

[30]  I. Smart,et al.  The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatial mice injected with [3H]thymidine on the eleventh and twelfth days post-conception. , 1977, Journal of anatomy.

[31]  A. Revzin Functional Localization in the Nucleus Rotundus , 1977 .

[32]  W. C. Hall,et al.  The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). I. Cytoarchitecture and connections , 1977, The Journal of comparative neurology.

[33]  W. Hodos,et al.  Intensity difference thresholds after lesions of the visual Wulst in pigeons. , 1977, Journal of comparative and physiological psychology.

[34]  J. Pettigrew Binocular visual processing in the owl’s telencephalon , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  M. Berkley,et al.  Striate cortex and visual acuity functions in the cat , 1979, The Journal of comparative neurology.

[36]  A. M. Granda,et al.  Neural mechanisms of behavior in the pigeon , 1979 .

[37]  Peter Wilson,et al.  The organization of the visual hyperstriatum in the domestic chick. I. Topology and topography of the visual projection , 1980, Brain Research.

[38]  O. Pompeiano,et al.  Brain mechanisms of perceptual awareness and purposeful behavior , 1982, Psychological Medicine.

[39]  B. Garber,et al.  3H‐Thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ , 1981, The Journal of comparative neurology.

[40]  C. J. Denton Topography of the hyperstriatal visual projection area in the young domestic chicken , 1981, Experimental Neurology.

[41]  U. Dräger,et al.  Observations on the organization of the visual cortex in the reeler mouse , 1981, The Journal of comparative neurology.

[42]  M. Steriade,et al.  Slow rhythmic rate fluctuations of cat midbrain reticular neurons in synchronized sleep and waking , 1982, Brain Research.

[43]  I. Smart,et al.  Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. , 1982, Journal of anatomy.

[44]  F. Magni,et al.  Visual wulst-optic tectum relationships in birds: a comparison with the mammalian corticotectal system. , 1982, Archives italiennes de biologie.

[45]  D S Blough,et al.  Pigeon perception of letters of the alphabet. , 1982, Science.

[46]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[47]  Harvey J. Karten,et al.  The laminar source of efferent projections from the avian Wulst , 1983, Brain Research.

[48]  A. Burkhalter,et al.  Organization of the afferent projections to the Wulst in the pigeon , 1983, The Journal of comparative neurology.

[49]  Jonathan Stone,et al.  Parallel Processing in the Visual System , 1983, Perspectives in Vision Research.

[50]  H. Vanegas,et al.  Comparative neurology of the optic tectum , 1984 .

[51]  K. Macko,et al.  Near-field acuity changes after visual system lesions in pigeons. II. Telencephalon , 1984, Behavioural Brain Research.

[52]  L. Chalupa Visual Physiology of the Mammalian Superior Colliculus , 1984 .

[53]  K. Macko,et al.  Near-field acuity after visual system lesions in pigeons. I. Thalamus , 1984, Behavioural Brain Research.

[54]  Sharon L. Greene,et al.  Pigeon visual memory capacity. , 1984 .

[55]  Charles G. Gross,et al.  Pattern recognition mechanisms , 1985 .

[56]  山田 久夫 Immunohistochemical studies on the serotonin neuron system in the brain of the chicken (Gallus domesticus) , 1985 .

[57]  P. Bagnoli,et al.  Regional distribution of catecholaminergic terminals in the pigeon visual system , 1985, Brain Research.

[58]  L. Chalupa,et al.  The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus , 1985, Neuroscience.

[59]  A. Antonini,et al.  Cortical Systems for Visual Pattern Discrimination in the Cat as Analyzed with the Lesion Method , 1985 .

[60]  L. Weiskrantz Blindsight : a case study and implications , 1986 .

[61]  William Hodos,et al.  Size-threshold changes after lesions of the visual telencephalon in pigeons , 1986, Behavioural Brain Research.

[62]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[63]  J. Repérant,et al.  Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columbia livia. , 1987, Journal fur Hirnforschung.

[64]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[65]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[66]  The lateral geniculate nucleus strikes back , 1988, Trends in Neurosciences.

[67]  W Hodos,et al.  Size-difference thresholds after lesions of thalamic visual nuclei in pigeons , 1988, Visual Neuroscience.

[68]  H. Karten,et al.  The Origins of Neocortex: Connections and Lamination as Distinct Events in Evolution , 1989, Journal of Cognitive Neuroscience.

[69]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.