A hybrid approach for solving multi-mode resource-constrained project scheduling problem in construction

Abstract Practical problems in construction can be easily qualified as NP-hard (non-deterministic, polynomial-time hard) problems. The time needed for solving these problems grows exponentially with the increase of the problem’s size – this is why mathematical and heuristic methods do not enable finding solutions to complicated construction problems within an acceptable period of time. In the view of many authors, metaheuristic algorithms seem to be the most appropriate measures for scheduling and task sequencing. However even metaheuristic approach does not guarantee finding the optimal solution and algorithms tend to get stuck around local optima of objective functions. This is why authors considered improving the metaheuristic approach by the use of neural networks. In the article, authors analyse possible benefits of using a hybrid approach with the use of metaheuristics and neural networks for solving the multi-mode, resource-constrained, project-scheduling problem (MRCPSP). The suggested approach is described and tested on a model construction project schedule. The results are promising for construction practitioners, the hybrid approach improved results in 87% of tests. Based on the research outcomes, authors suggest future research ideas.

[1]  Heng Li,et al.  Multimode Project Scheduling Based on Particle Swarm Optimization , 2006, Comput. Aided Civ. Infrastructure Eng..

[2]  J. Kulejewski,et al.  Metoda symulacyjna wyznaczania wielkości buforów stabilizujących harmonogramy budowlane , 2011 .

[3]  Jorge Magalhães-Mendes,et al.  A two-level genetic algorithm for the multi-mode resource-constrained project scheduling problem , 2011 .

[4]  Nabi Ibadov Fuzzy Estimation Of Activities Duration In Construction Projects , 2015 .

[5]  J. Rosłon The Multi-Mode, Resource-Constrained Project Scheduling Problem in Construction: State of Art Review and Research Challenges , 2017 .

[6]  Grzegorz Waligóra,et al.  Simulated Annealing for Multi-Mode Resource-Constrained Project Scheduling , 2001, Ann. Oper. Res..

[7]  Mohammad Ranjbar,et al.  A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling , 2009, Eur. J. Oper. Res..

[8]  Michał Urbaniak Zastosowanie algorytmu mrówkowego do optymalizacji czasowo-kosztowej projektów informatycznych , 2012 .

[9]  Mario Vanhoucke,et al.  A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[10]  Hojjat Adeli,et al.  Scheduling/Cost Optimization and Neural Dynamics Model for Construction , 1997 .

[11]  Hojjat Adeli,et al.  Resource Scheduling Using Neural Dynamics Model of Adeli and Park , 2001 .

[12]  Anurag Agarwal,et al.  Multi-Mode Resource-Constrained Project-Scheduling Problem With Renewable Resources: New Solution Approaches , 2013 .

[13]  Jerzy Rosłon Porównanie algorytmów genetycznego i przeszukiwania tabu wykorzystanych do szeregowania zadań w budownictwie , 2016 .

[14]  Asim Karim,et al.  Construction Scheduling, Cost Optimization and Management , 2001 .

[15]  Guillermo Infante-Hernandez,et al.  Neural Network Modelling And Simulation Of The Scheduling , 2008, BASYS.

[16]  Mojahed Jaberi,et al.  A Multi-objective Resource-Constrained Project-Scheduling Problem Using Mean Field Annealing Neural Networks , 2014 .

[17]  Jacek Zawistowski,et al.  Construction Projects’ Indicators Improvement Using Selected Metaheuristic Algorithms , 2016 .