Neural Dynamics of Object-based Multifocal Visual Spatial Attention and Priming: Object Cueing, Useful-field-of-view, and Crowding Cognitive Psychology

[1]  Eysenck Keane Cognitive Psychology, 6 , 2012 .

[2]  Stephen Grossberg,et al.  On the road to invariant recognition: Explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning , 2011, Neural Networks.

[3]  Stephen Grossberg,et al.  How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex? , 2011, Neural Networks.

[4]  P. Roelfsema,et al.  Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex , 2011, Nature Neuroscience.

[5]  S. Grossberg,et al.  How Does the Brain Rapidly Learn and Reorganize View- and Positionally-Invariant Object Representations in Inferior Temporal Cortex? , 2011 .

[6]  J. Theeuwes,et al.  Gradual Remapping Results in Early Retinotopic and Late Spatiotopic Inhibition of Return , 2010, Psychological science.

[7]  S. Grossberg,et al.  Cortical dynamics of contextually cued attentive visual learning and search: spatial and object evidence accumulation. , 2010, Psychological review.

[8]  J. DiCarlo,et al.  Unsupervised Natural Visual Experience Rapidly Reshapes Size-Invariant Object Representation in Inferior Temporal Cortex , 2010, Neuron.

[9]  Julie D. Golomb,et al.  Attentional Facilitation throughout Human Visual Cortex Lingers in Retinotopic Coordinates after Eye Movements , 2010, The Journal of Neuroscience.

[10]  Todd S Horowitz,et al.  Distinguishing between parallel and serial accounts of multiple object tracking. , 2010, Journal of vision.

[11]  Stephen Grossberg,et al.  A laminar cortical model of stereopsis and 3D surface perception of complex natural scenes , 2010 .

[12]  E. Vogel,et al.  Discrete capacity limits in visual working memory , 2010, Current Opinion in Neurobiology.

[13]  K. Cave,et al.  Split attention as part of a flexible attentional system for complex scenes: comment on Jans, Peters, and De Weerd (2010). , 2010, Psychological review.

[14]  Jan Theeuwes,et al.  From reorienting of attention to biased competition: Evidence from hemifield effects , 2010, Attention, perception & psychophysics.

[15]  J. Theeuwes,et al.  Object-based eye movements: The eyes prefer to stay within the same object , 2010, Attention, perception & psychophysics.

[16]  Julie D. Golomb,et al.  Robustness of the retinotopic attentional trace after eye movements. , 2010, Journal of vision.

[17]  Karin S. Pilz,et al.  Individual differences in object based attention , 2010 .

[18]  Heiko Neumann,et al.  A neural model of the temporal dynamics of figure-ground segregation in motion perception , 2010, Neural Networks.

[19]  Diane M. Beck,et al.  Competition in Visual Cortex Impedes Attention to Multiple Items , 2010, The Journal of Neuroscience.

[20]  P. De Weerd,et al.  Visual spatial attention to multiple locations at once: the jury is still out. , 2010, Psychological review.

[21]  Jan Theeuwes,et al.  Evidence for the predictive remapping of visual attention , 2009, Experimental Brain Research.

[22]  M. Potter,et al.  Temporal constraints on conscious vision: on the ubiquitous nature of the attentional blink. , 2009, Journal of vision.

[23]  Stephen Grossberg,et al.  Target Selection by the Frontal Cortex during Coordinated Saccadic and Smooth Pursuit Eye Movements , 2009, Journal of Cognitive Neuroscience.

[24]  D. Xiao,et al.  Laminar and modular organization of prefrontal projections to multiple thalamic nuclei , 2009, Neuroscience.

[25]  J. Gallant,et al.  Combined effects of spatial and feature-based attention on responses of V4 neurons , 2009, Vision Research.

[26]  D. Melcher Selective attention and the active remapping of object features in trans-saccadic perception , 2009, Vision Research.

[27]  S. Grossberg Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Geoffrey M Ghose,et al.  Attentional modulation of visual responses by flexible input gain. , 2009, Journal of neurophysiology.

[29]  Stephen Grossberg,et al.  ARTSCENE: A neural system for natural scene classification. , 2009, Journal of vision.

[30]  S. Yantis,et al.  A Domain-Independent Source of Cognitive Control for Task Sets: Shifting Spatial Attention and Switching Categorization Rules , 2009, The Journal of Neuroscience.

[31]  Joonyeol Lee,et al.  A Normalization Model of Attentional Modulation of Single Unit Responses , 2009, PloS one.

[32]  S. Grossberg,et al.  View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds , 2009, Cognitive Psychology.

[33]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[34]  S. Grossberg,et al.  From stereogram to surface: how the brain sees the world in depth. , 2009, Spatial vision.

[35]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[36]  David Melcher,et al.  Dynamic, object-based remapping of visual features in trans-saccadic perception. , 2008, Journal of vision.

[37]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[38]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[39]  S. Grossberg,et al.  Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: toward a unified theory of how the cerebral cortex works. , 2008, Psychological review.

[40]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[41]  L. Maloney,et al.  Perceptual organization and neural computation. , 2008, Journal of vision.

[42]  M. Goldberg,et al.  Neural Enhancement and Pre-Emptive Perception: The Genesis of Attention and the Attentional Maintenance of the Cortical Salience Map , 2008, Perception.

[43]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[44]  Moshe Bar,et al.  Integrated Contextual Representation for Objects' Identities and Their Locations , 2008, Journal of Cognitive Neuroscience.

[45]  D. Levi Crowding—An essential bottleneck for object recognition: A mini-review , 2008, Vision Research.

[46]  S. Gerber,et al.  Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex , 2008 .

[47]  Preeti Verghese,et al.  The wallpaper illusion explained. , 2007, Journal of vision.

[48]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[49]  S. Grossberg,et al.  Texture segregation by visual cortex: Perceptual grouping, attention, and learning , 2007, Vision Research.

[50]  Elisabeth J. Ploran,et al.  Evidence Accumulation and the Moment of Recognition: Dissociating Perceptual Recognition Processes Using fMRI , 2007, The Journal of Neuroscience.

[51]  George A Alvarez,et al.  How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. , 2007, Journal of vision.

[52]  G. Alvarez,et al.  How many locations can be selected at once? , 2007, Journal of experimental psychology. Human perception and performance.

[53]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[54]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[55]  Paige E. Scalf,et al.  The Neural Correlates of an Expanded Functional Field of View. , 2007, The journals of gerontology. Series B, Psychological sciences and social sciences.

[56]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[57]  P. Tse,et al.  V3A processes contour curvature as a trackable feature for the perception of rotational motion. , 2007, Cerebral cortex.

[58]  Mazyar Fallah,et al.  Stimulus-specific competitive selection in macaque extrastriate visual area V4 , 2007, Proceedings of the National Academy of Sciences.

[59]  S. Grossberg,et al.  A neural model of 3D shape-from-texture: Multiple-scale filtering, boundary grouping, and surface filling-in , 2007, Vision Research.

[60]  J. Wolfe,et al.  Tracking unique objects , 2007, Perception & psychophysics.

[61]  C S Green,et al.  Action-Video-Game Experience Alters the Spatial Resolution of Vision , 2007, Psychological science.

[62]  James M. Brown,et al.  Shifting attention into and out of objects: Evaluating the processes underlying the object advantage , 2005, Perception & psychophysics.

[63]  S. Grossberg Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. , 2007, Progress in brain research.

[64]  S. Grossberg,et al.  Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. , 2007, Spatial vision.

[65]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[66]  Julie I. Cohen,et al.  Effect of action video games on the spatial distribution of visuospatial attention. , 2006, Journal of experimental psychology. Human perception and performance.

[67]  Allison B. Sekuler,et al.  Age related differences in learning with the useful field of view , 2006, Vision Research.

[68]  E. L. Schwartz,et al.  Multi-area visuotopic map complexes in macaque striate and extra-striate cortex , 2006, Vision Research.

[69]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[70]  C. S. Green,et al.  Enumeration versus multiple object tracking: the case of action video game players , 2006, Cognition.

[71]  H. Barbas,et al.  Prefrontal Projections to the Thalamic Reticular Nucleus form a Unique Circuit for Attentional Mechanisms , 2006, The Journal of Neuroscience.

[72]  Antígona Martínez,et al.  Objects Are Highlighted by Spatial Attention , 2006, Journal of Cognitive Neuroscience.

[73]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Grossberg,et al.  A neural model of surface perception: lightness, anchoring, and filling-in. , 2006, Spatial vision.

[75]  B. Scholl,et al.  How does attention select and track spatially extended objects? New effects of attentional concentration and amplification. , 2005, Journal of experimental psychology. General.

[76]  D. Somers,et al.  Processing Efficiency of Divided Spatial Attention Mechanisms in Human Visual Cortex , 2005, The Journal of Neuroscience.

[77]  J. Gallant,et al.  Time Course of Attention Reveals Different Mechanisms for Spatial and Feature-Based Attention in Area V4 , 2005, Neuron.

[78]  P. Cavanagh,et al.  Independent Resources for Attentional Tracking in the Left and Right Visual Hemifields , 2005, Psychological science.

[79]  Helga C. Arsenio,et al.  Do multielement visual tracking and visual search draw continuously on the same visual attention resources? , 2005, Journal of experimental psychology. Human perception and performance.

[80]  Jacqueline Gottlieb,et al.  Simultaneous representation of saccade targets and visual onsets in monkey lateral intraparietal area. , 2005, Cerebral cortex.

[81]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[82]  P. Cavanagh,et al.  Tracking multiple targets with multifocal attention , 2005, Trends in Cognitive Sciences.

[83]  S. Grossberg,et al.  Laminar cortical dynamics of 3D surface perception: Stratification, transparency, and neon color spreading , 2005, Vision Research.

[84]  Cathleen M Moore,et al.  The spread of attention to hidden portions of occluded surfaces , 2005, Psychonomic bulletin & review.

[85]  Stephen Grossberg,et al.  A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis. , 2004, Spatial vision.

[86]  D. Tomasi,et al.  Practice-induced changes of brain function during visual attention: a parametric fMRI study at 4 Tesla , 2004, NeuroImage.

[87]  Jens Schwarzbach,et al.  Control of object-based attention in human cortex. , 2004, Cerebral cortex.

[88]  Stephen Grossberg,et al.  A neuromorphic model for achromatic and chromatic surface representation of natural images , 2004, Neural Networks.

[89]  D. Somers,et al.  Multiple Spotlights of Attentional Selection in Human Visual Cortex , 2004, Neuron.

[90]  Jude F. Mitchell,et al.  Object-based attention determines dominance in binocular rivalry , 2004, Nature.

[91]  Stephen Grossberg,et al.  A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability , 2004, Vision Research.

[92]  Stephen Grossberg,et al.  How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades , 2004, Neural Networks.

[93]  Maro G. Machizawa,et al.  Neural activity predicts individual differences in visual working memory capacity , 2004, Nature.

[94]  S. Yantis,et al.  Configural and contextual prioritization in object-based attention , 2004, Psychonomic bulletin & review.

[95]  S. Kyuhou,et al.  Thalamo-cortical projections to the posterior parietal cortex in the monkey , 2004, Neuroscience Letters.

[96]  Stephen Grossberg,et al.  Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.

[97]  Michael T. Tolston,et al.  Journal of Experimental Psychology : Human Perception and Performance Movement Constraints on Interpersonal Coordination and Communication , 2014 .

[98]  Morris Goldsmith,et al.  Modulation of object-based attention by spatial focus under endogenous and exogenous orienting. , 2003, Journal of experimental psychology. Human perception and performance.

[99]  S. A. Hillyard,et al.  Sustained division of the attentional spotlight , 2003, Nature.

[100]  C. S. Green,et al.  Action video game modifies visual selective attention , 2003, Nature.

[101]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[102]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[103]  Stephen Grossberg,et al.  A Neural Theory of Punishment and Avoidance , II : Quantitative Theory , 2003 .

[104]  J. Reynolds,et al.  Exogenously cued attention triggers competitive selection of surfaces , 2003, Vision Research.

[105]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[106]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[107]  M. Chun,et al.  Perceptual constraints on implicit learning of spatial context , 2002 .

[108]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[109]  Dominique Lamy,et al.  Object-based selection: The role of attentional shifts , 2002, Perception & psychophysics.

[110]  P. Cavanagh,et al.  Attention Response Functions Characterizing Brain Areas Using fMRI Activation during Parametric Variations of Attentional Load , 2001, Neuron.

[111]  P. Cavanagh,et al.  The Spatial Resolution of Visual Attention , 2001, Cognitive Psychology.

[112]  M. Chun,et al.  Selective attention modulates implicit learning , 2001, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[113]  D. B. Bender,et al.  Vertical meridian representation on the prelunate gyrus in area V4 of macaque , 2001, Brain Research Bulletin.

[114]  M. Chun,et al.  Temporal contextual cuing of visual attention. , 2001, Journal of experimental psychology. Learning, memory, and cognition.

[115]  H. Spekreijse,et al.  The spatial profile of visual attention in mental curve tracing , 2001, Vision Research.

[116]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[117]  B. Scholl Objects and attention: the state of the art , 2001, Cognition.

[118]  P. Cavanagh,et al.  Attention-based visual routines: sprites , 2001, Cognition.

[119]  Z. Pylyshyn Visual indexes, preconceptual objects, and situated vision , 2001, Cognition.

[120]  S. Grossberg,et al.  Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast , 2001 .

[121]  Z. Pylyshyn,et al.  What is a visual object? Evidence from target merging in multiple object tracking , 2001, Cognition.

[122]  C M Moore,et al.  Visual attention and the apprehension of spatial relations: The case of depth , 2001, Perception & psychophysics.

[123]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[124]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[125]  S. Grossberg,et al.  Neural dynamics of 3-D surface perception: Figure-ground separation and lightness perception , 2000, Perception & psychophysics.

[126]  Erik Blaser,et al.  Tracking an object through feature space , 2000, Nature.

[127]  C L Colby,et al.  Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. , 2000, Journal of neurophysiology.

[128]  S. Grossberg How hallucinations may arise from brain mechanisms of learning, attention, and volition , 2000, Journal of the International Neuropsychological Society.

[129]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[130]  S. Grossberg The complementary brain: unifying brain dynamics and modularity , 2000, Trends in Cognitive Sciences.

[131]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[132]  S. Grossberg,et al.  Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex , 2000, Vision Research.

[133]  Zenon W. Pylyshyn,et al.  Situating vision in the world , 2000, Trends in Cognitive Sciences.

[134]  M. Chun,et al.  Contextual cueing of visual attention , 2022 .

[135]  M. Carrasco,et al.  Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement , 2000, Vision Research.

[136]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[137]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[138]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[139]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[140]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[141]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[142]  E. Vogel,et al.  Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[143]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[144]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[145]  Barry D. Vaughan,et al.  Object-Based Visual Selection: Evidence From Perceptual Completion , 1998 .

[146]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[147]  Giorgio Bonmassar,et al.  Space-Variant Fourier Analysis: The Exponential Chirp Transform , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[148]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997, Psychological review.

[149]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[150]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[151]  G. Logan The CODE theory of visual attention: an integration of space-based and object-based attention. , 1996, Psychological review.

[152]  K Nakayama,et al.  Visual attention to surfaces in three-dimensional space. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Alan N. Gove,et al.  Brightness perception, illusory contours, and corticogeniculate feedback , 1995, Visual Neuroscience.

[154]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[155]  C W Tyler,et al.  Mechanisms of Stereoscopic Processing: Stereoattention and Surface Perception in Depth Reconstruction , 1995, Perception.

[156]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[157]  Stephen Grossbergy,et al.  BRIGHTNESS PERCEPTION , ILLUSORY CONTOURS , AND CORTICOGENICULATE , 1995 .

[158]  S Grossberg,et al.  3-D vision and figure-ground separation by visual cortex , 2010, Perception & psychophysics.

[159]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[160]  W. D. Ross,et al.  A Neural Theory of Attentive Visual Search : Interactions of Boundary , Surface , Spatial , and Object Representations By : Stephen Grossberg , 2004 .

[161]  R. Rafal,et al.  Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. , 1994, Journal of experimental psychology. General.

[162]  Z. Pylyshyn,et al.  Multiple parallel access in visual attention. , 1994, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[163]  G. A. Miller The magical number seven plus or minus two: some limits on our capacity for processing information. , 1956, Psychological review.

[164]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[165]  S. Grossberg,et al.  Normal and amnesic learning, recognition and memory by a neural model of cortico-hippocampal interactions , 1993, Trends in Neurosciences.

[166]  D. Levi,et al.  The two-dimensional shape of spatial interaction zones in the parafovea , 1992, Vision Research.

[167]  D. Pelli,et al.  The information capacity of visual attention , 1992, Vision Research.

[168]  D. Kahneman,et al.  The reviewing of object files: Object-specific integration of information , 1992, Cognitive Psychology.

[169]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[170]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[171]  S. Grossberg,et al.  Pattern Recognition by Self-Organizing Neural Networks , 1991 .

[172]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[173]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[174]  S. Yantis,et al.  Abrupt visual onsets and selective attention: voluntary versus automatic allocation. , 1990, Journal of experimental psychology. Human perception and performance.

[175]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[176]  Steven A. Hillyard,et al.  Independent hemispheric attentional systems mediate visual search in split-brain patients , 1989, Nature.

[177]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[178]  Z. Pylyshyn The role of location indexes in spatial perception: A sketch of the FINST spatial-index model , 1989, Cognition.

[179]  M E Goldberg,et al.  Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey. , 1989, Journal of neurophysiology.

[180]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[181]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[182]  Z W Pylyshyn,et al.  Tracking multiple independent targets: evidence for a parallel tracking mechanism. , 1988, Spatial vision.

[183]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[184]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[185]  R. Sekuler,et al.  Visual localization: age and practice. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[186]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[187]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[188]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[189]  Stephen Grossberg,et al.  Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance , 1984, Perception & psychophysics.

[190]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[191]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[192]  M. Posner,et al.  Neural systems control of spatial orienting. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[193]  S. Grossberg Biological competition: Decision rules, pattern formation, and oscillations. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[194]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[195]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[196]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[197]  Goldman-Rakic Ps,et al.  Impact of the outside world upon the developing primate brain. Perspective from neurobiology. , 1979 .

[198]  P. Rakic,et al.  Impact of the outside world upon the developing primate brain. Perspective from neurobiology. , 1979, Bulletin of the Menninger Clinic.

[199]  S. Grossberg Do all neural models really look alike? A comment on Anderson, Silverstein, Ritz, and Jones. , 1978, Psychological review.

[200]  S. Grossberg Decisions, patterns, and oscillations in nonlinear competitive systems with applications to Volterra-Lotka systems. , 1978, Journal of theoretical biology.

[201]  E. Schwartz The development of specific visual connections in the monkey and the goldfish: outline of a geometric theory of receptotopic structure. , 1977, Journal of theoretical biology.

[202]  N. Drasdo The neural representation of visual space , 1977, Nature.

[203]  B. Fischer Overlap of receptive field centers and representation of the visual field in the cat's optic tract. , 1973, Vision research.

[204]  H. Bouma Visual interference in the parafoveal recognition of initial and final letters of words. , 1973, Vision research.

[205]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[206]  H. BOUMA,et al.  Interaction Effects in Parafoveal Letter Recognition , 1970, Nature.

[207]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[208]  J. Deutsch Perception and Communication , 1958, Nature.

[209]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[210]  D. Spalding The Principles of Psychology , 1873, Nature.