An algorithm for the inversion of Laplace transforms using Puiseux expansions

This paper is devoted to designing a practical algorithm to invert the Laplace transform by assuming that the transform possesses the Puiseux expansion at infinity. First, the general asymptotic expansion of the inverse function at zero is derived, which can be used to approximate the inverse function when the variable is small. Second, an inversion algorithm is formulated by splitting the Bromwich integral into two parts. One is the main weakly oscillatory part, which is evaluated by a composite Gauss–Legendre rule and its Kronrod extension, and the other is the remaining strongly oscillatory part, which is integrated analytically using the Puiseux expansion of the transform at infinity. Finally, some typical tests show that the algorithm can be used to invert a wide range of Laplace transforms automatically with high accuracy and the output error estimator matches well with the true error.

[1]  M. Iqbal On a numerical technique regarding inversion of the Laplace transform , 1995 .

[2]  Mariarosaria Rizzardi,et al.  A modification of Talbot's method for the simultaneous approximation of several values of the inverse Laplace transform , 1995, TOMS.

[3]  Donal F. Connon Various applications of the (exponential) complete Bell polynomials , 2010 .

[4]  Zhiyue Zhang,et al.  The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions , 2017, Adv. Comput. Math..

[5]  S. Ehrich Stieltjes Polynomials and the Error of Gauss-Kronrod Quadrature Formulas , 1999 .

[6]  A. Sellier,et al.  Asymptotic expansions of a class of integrals , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[7]  Adrien Poteaux,et al.  Good reduction of Puiseux series and applications , 2012, J. Symb. Comput..

[8]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[9]  Na Li,et al.  The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities , 2015, Int. J. Comput. Math..

[10]  J. A. C. Weideman,et al.  Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..

[11]  Almerico Murli,et al.  Software for an implementation of Weeks' method for the inverse Laplace transform , 1988, TOMS.

[12]  Almerico Murli,et al.  Algorithm 682: Talbot's method of the Laplace inversion problems , 1990, TOMS.

[13]  Jennifer A. Scott,et al.  Pivoting strategies for tough sparse indefinite systems , 2013, TOMS.

[14]  D. P. Gaver,et al.  Observing Stochastic Processes, and Approximate Transform Inversion , 1966, Oper. Res..

[15]  Hassan Hassanzadeh,et al.  Comparison of different numerical Laplace inversion methods for engineering applications , 2007, Appl. Math. Comput..

[16]  W. E. Olmstead,et al.  Asymptotic Solution to a Class of Nonlinear Volterra Integral Equations , 1972 .

[17]  Hossam Afifi,et al.  A Survey on Personalized TV and NGN Services through Context-Awareness , 2012, CSUR.

[18]  Dongwoo Sheen,et al.  An accurate numerical inversionof Laplace transforms based on the location of their poles , 2004 .

[19]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[20]  J. A. C. Weideman,et al.  Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..

[21]  J. N. Lyness,et al.  A modification of the weeks method for numerical inversion of the Laplace transform , 1986 .

[22]  F. Olver Asymptotics and Special Functions , 1974 .

[23]  Harvey Dubner,et al.  Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform , 1968, JACM.

[24]  Henryk Gzyl,et al.  Laplace transform inversion on the real line is truly ill-conditioned , 2013, Appl. Math. Comput..

[25]  Peter P. Valko,et al.  Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion , 2004 .

[27]  R. Piessens Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the laplace transform , 1971 .

[28]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[29]  G. Milovanović,et al.  Numerical Inversion of the Laplace Transform , 2005 .

[30]  Salvatore Cuomo,et al.  Computation of the inverse Laplace transform based on a collocation method which uses only real values , 2007 .

[31]  Benedict Dingfelder,et al.  An improved Talbot method for numerical Laplace transform inversion , 2013, Numerical Algorithms.

[32]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[33]  Fu-Rong Lin,et al.  Application of high order numerical quadratures to numerical inversion of the Laplace transform , 2012, Adv. Comput. Math..

[34]  Joel L. Schiff,et al.  The Laplace Transform , 1999 .

[35]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[36]  Giovanni Monegato,et al.  An overview of the computational aspects of Kronrod quadrature rules , 2001, Numerical Algorithms.

[37]  Paul N. Swarztrauber,et al.  On Computing the Points and Weights for Gauss-Legendre Quadrature , 2002, SIAM J. Sci. Comput..

[38]  Sven Ehrich,et al.  HIGH ORDER ERROR CONSTANTS OF GAUSS-KRONROD QUADRATURE FORMULAS , 1996 .

[39]  D. Levin,et al.  Numerical inversion of the Laplace transform by accelerating the convergence of Bromwick's integral☆ , 1975 .

[40]  Zhiyue Zhang,et al.  The modified composite Gauss type rules for singular integrals using Puiseux expansions , 2016, Math. Comput..

[41]  Stefania Corsaro,et al.  Algorithm 944 , 2014 .

[42]  Avram Sidi,et al.  Practical Extrapolation Methods - Theory and Applications , 2003, Cambridge monographs on applied and computational mathematics.

[43]  F. Oberhettinger,et al.  Tables of Laplace Transforms , 1973 .

[44]  Zhifang Liu,et al.  A Local Fractional Taylor Expansion and Its Computation for Insufficiently Smooth Functions , 2015 .

[45]  Knut Petras,et al.  On the computation of the Gauss-Legendre quadrature formula with a given precision , 1999 .

[46]  J. Schiff The Laplace Transform: Theory and Applications , 1999 .

[47]  A. M. Cohen Numerical Methods for Laplace Transform Inversion , 2007 .

[48]  Kristopher L. Kuhlman Review of inverse Laplace transform algorithms for Laplace-space numerical approaches , 2012, Numerical Algorithms.

[49]  Pedro Gonnet,et al.  A review of error estimation in adaptive quadrature , 2010, CSUR.

[50]  Giovanna Ilardi,et al.  PUISEUX POWER SERIES SOLUTIONS FOR SYSTEMS OF EQUATIONS , 2008, 0811.0414.

[51]  Almerico Murli,et al.  ReLaTIve. An Ansi C90 software package for the Real Laplace Transform Inversion , 2012, Numerical Algorithms.

[52]  G. Genin,et al.  Algebraic inversion of the Laplace transform , 2005 .

[54]  Dean G. Duffy,et al.  Transform Methods for Solving Partial Differential Equations , 2004 .

[55]  Rosanna Campagna,et al.  Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems , 2015, Appl. Math. Comput..

[56]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[57]  Gene H. Golub,et al.  Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..

[58]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[59]  Almerico Murli,et al.  An implementation of a Fourier series method for the numerical inversion of the Laplace transform , 1999, TOMS.

[60]  Dean G. Duffy,et al.  On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications , 1993, TOMS.

[61]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[62]  William T. Weeks,et al.  Numerical Inversion of Laplace Transforms Using Laguerre Functions , 1966, JACM.