An algorithm for the inversion of Laplace transforms using Puiseux expansions
暂无分享,去创建一个
[1] M. Iqbal. On a numerical technique regarding inversion of the Laplace transform , 1995 .
[2] Mariarosaria Rizzardi,et al. A modification of Talbot's method for the simultaneous approximation of several values of the inverse Laplace transform , 1995, TOMS.
[3] Donal F. Connon. Various applications of the (exponential) complete Bell polynomials , 2010 .
[4] Zhiyue Zhang,et al. The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions , 2017, Adv. Comput. Math..
[5] S. Ehrich. Stieltjes Polynomials and the Error of Gauss-Kronrod Quadrature Formulas , 1999 .
[6] A. Sellier,et al. Asymptotic expansions of a class of integrals , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[7] Adrien Poteaux,et al. Good reduction of Puiseux series and applications , 2012, J. Symb. Comput..
[8] J. Abate,et al. Multi‐precision Laplace transform inversion , 2004 .
[9] Na Li,et al. The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities , 2015, Int. J. Comput. Math..
[10] J. A. C. Weideman,et al. Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..
[11] Almerico Murli,et al. Software for an implementation of Weeks' method for the inverse Laplace transform , 1988, TOMS.
[12] Almerico Murli,et al. Algorithm 682: Talbot's method of the Laplace inversion problems , 1990, TOMS.
[13] Jennifer A. Scott,et al. Pivoting strategies for tough sparse indefinite systems , 2013, TOMS.
[14] D. P. Gaver,et al. Observing Stochastic Processes, and Approximate Transform Inversion , 1966, Oper. Res..
[15] Hassan Hassanzadeh,et al. Comparison of different numerical Laplace inversion methods for engineering applications , 2007, Appl. Math. Comput..
[16] W. E. Olmstead,et al. Asymptotic Solution to a Class of Nonlinear Volterra Integral Equations , 1972 .
[17] Hossam Afifi,et al. A Survey on Personalized TV and NGN Services through Context-Awareness , 2012, CSUR.
[18] Dongwoo Sheen,et al. An accurate numerical inversionof Laplace transforms based on the location of their poles , 2004 .
[19] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[20] J. A. C. Weideman,et al. Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..
[21] J. N. Lyness,et al. A modification of the weeks method for numerical inversion of the Laplace transform , 1986 .
[22] F. Olver. Asymptotics and Special Functions , 1974 .
[23] Harvey Dubner,et al. Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform , 1968, JACM.
[24] Henryk Gzyl,et al. Laplace transform inversion on the real line is truly ill-conditioned , 2013, Appl. Math. Comput..
[25] Peter P. Valko,et al. Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion , 2004 .
[27] R. Piessens. Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the laplace transform , 1971 .
[28] B. Davies,et al. Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .
[29] G. Milovanović,et al. Numerical Inversion of the Laplace Transform , 2005 .
[30] Salvatore Cuomo,et al. Computation of the inverse Laplace transform based on a collocation method which uses only real values , 2007 .
[31] Benedict Dingfelder,et al. An improved Talbot method for numerical Laplace transform inversion , 2013, Numerical Algorithms.
[32] A. Talbot. The Accurate Numerical Inversion of Laplace Transforms , 1979 .
[33] Fu-Rong Lin,et al. Application of high order numerical quadratures to numerical inversion of the Laplace transform , 2012, Adv. Comput. Math..
[34] Joel L. Schiff,et al. The Laplace Transform , 1999 .
[35] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[36] Giovanni Monegato,et al. An overview of the computational aspects of Kronrod quadrature rules , 2001, Numerical Algorithms.
[37] Paul N. Swarztrauber,et al. On Computing the Points and Weights for Gauss-Legendre Quadrature , 2002, SIAM J. Sci. Comput..
[38] Sven Ehrich,et al. HIGH ORDER ERROR CONSTANTS OF GAUSS-KRONROD QUADRATURE FORMULAS , 1996 .
[39] D. Levin,et al. Numerical inversion of the Laplace transform by accelerating the convergence of Bromwick's integral☆ , 1975 .
[40] Zhiyue Zhang,et al. The modified composite Gauss type rules for singular integrals using Puiseux expansions , 2016, Math. Comput..
[41] Stefania Corsaro,et al. Algorithm 944 , 2014 .
[42] Avram Sidi,et al. Practical Extrapolation Methods - Theory and Applications , 2003, Cambridge monographs on applied and computational mathematics.
[43] F. Oberhettinger,et al. Tables of Laplace Transforms , 1973 .
[44] Zhifang Liu,et al. A Local Fractional Taylor Expansion and Its Computation for Insufficiently Smooth Functions , 2015 .
[45] Knut Petras,et al. On the computation of the Gauss-Legendre quadrature formula with a given precision , 1999 .
[46] J. Schiff. The Laplace Transform: Theory and Applications , 1999 .
[47] A. M. Cohen. Numerical Methods for Laplace Transform Inversion , 2007 .
[48] Kristopher L. Kuhlman. Review of inverse Laplace transform algorithms for Laplace-space numerical approaches , 2012, Numerical Algorithms.
[49] Pedro Gonnet,et al. A review of error estimation in adaptive quadrature , 2010, CSUR.
[50] Giovanna Ilardi,et al. PUISEUX POWER SERIES SOLUTIONS FOR SYSTEMS OF EQUATIONS , 2008, 0811.0414.
[51] Almerico Murli,et al. ReLaTIve. An Ansi C90 software package for the Real Laplace Transform Inversion , 2012, Numerical Algorithms.
[52] G. Genin,et al. Algebraic inversion of the Laplace transform , 2005 .
[54] Dean G. Duffy,et al. Transform Methods for Solving Partial Differential Equations , 2004 .
[55] Rosanna Campagna,et al. Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems , 2015, Appl. Math. Comput..
[56] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[57] Gene H. Golub,et al. Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..
[58] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[59] Almerico Murli,et al. An implementation of a Fourier series method for the numerical inversion of the Laplace transform , 1999, TOMS.
[60] Dean G. Duffy,et al. On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications , 1993, TOMS.
[61] Dirk Laurie,et al. Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..
[62] William T. Weeks,et al. Numerical Inversion of Laplace Transforms Using Laguerre Functions , 1966, JACM.