Smoothed Aggregation Multigrid for Markov Chains
暂无分享,去创建一个
Thomas A. Manteuffel | Hans De Sterck | Stephen F. McCormick | John W. Ruge | Killian Miller | Geoffrey Sanders | J. Pearson | T. Manteuffel | S. McCormick | J. Ruge | J. Pearson | G. Sanders | Killian Miller | H. Sterck
[1] Graham Horton,et al. A Multi-Level Method for the Steady State Solution of Markov Chains , 2004, SimVis.
[2] Thomas A. Manteuffel,et al. Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..
[3] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[4] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[5] Amy Nicole Langville,et al. Google's PageRank and beyond - the science of search engine rankings , 2006 .
[6] Elena Virnik,et al. An Algebraic Multigrid Preconditioner for a Class of Singular M-Matrices , 2007, SIAM J. Sci. Comput..
[7] Graham Horton,et al. A multi-level solution algorithm for steady-state Markov chains , 1994, SIGMETRICS.
[8] Tugrul Dayar,et al. Comparison of Partitioning Techniques for Two-Level Iterative Solvers on Large, Sparse Markov Chains , 1999, SIAM J. Sci. Comput..
[9] Yvan Notay,et al. Analysis of Aggregation-Based Multigrid , 2008, SIAM J. Sci. Comput..
[10] Udo R. Krieger,et al. On a two-level multigrid solution method for finite Markov chains , 1995 .
[11] T. Y. WilliamJ,et al. Numerical Methods in Markov Chain Modeling , 1992, Operational Research.
[12] Herbert A. Simon,et al. Aggregation of Variables in Dynamic Systems , 1961 .
[13] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[14] Thomas A. Manteuffel,et al. Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..
[15] Van Emden Henson,et al. Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..
[16] Udo R. Krieger,et al. Modeling and Analysis of Communication Systems Based on Computational Methods for Markov Chains , 1990, IEEE J. Sel. Areas Commun..
[17] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[18] Kyle W. Kindle,et al. An iterative aggregation-disaggregation algorithm for solving linear equations , 1986 .
[19] W. Stewart,et al. ITERATIVE METHODS FOR COMPUTING STATIONARY DISTRIBUTIONS OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1984 .
[20] L. Asz. Random Walks on Graphs: a Survey , 2022 .
[21] William J. Stewart,et al. Introduction to the numerical solution of Markov Chains , 1994 .
[22] S. Leutenegger,et al. ON THE UTILITY OF THE MULTI-LEVEL ALGORITHM FOR THE SOLUTION OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1994 .
[23] Rajeev Motwani,et al. The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.
[24] Jonathan J. Hu,et al. A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..
[25] I. Marek,et al. Convergence theory of some classes of iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices , 2003 .
[26] William L. Briggs,et al. A multigrid tutorial , 1987 .
[27] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[28] T. Manteuffel,et al. Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .
[29] Marian Brezina,et al. Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.
[30] László Lovász,et al. Random Walks on Graphs: A Survey , 1993 .
[31] Ivo Marek,et al. Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices , 1998, Numer. Linear Algebra Appl..
[32] Panayot S. Vassilevski,et al. A generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed aggregation (SA) multigrid , 2008, Numer. Linear Algebra Appl..