Smoothed Aggregation Multigrid for Markov Chains

A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid methods for Markov chains that have been proposed in the literature. The proposed smoothing approach is inspired by smoothed aggregation multigrid for linear systems, supplemented with a new lumping technique that assures well-posedness of the coarse-level problems: the coarse-level operators are singular M-matrices on all levels, resulting in strictly positive coarse-level corrections on all levels. Numerical results show how these methods lead to nearly optimal multigrid efficiency for an extensive set of test problems, both when geometric and algebraic aggregation strategies are used.

[1]  Graham Horton,et al.  A Multi-Level Method for the Steady State Solution of Markov Chains , 2004, SimVis.

[2]  Thomas A. Manteuffel,et al.  Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..

[3]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[4]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[5]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[6]  Elena Virnik,et al.  An Algebraic Multigrid Preconditioner for a Class of Singular M-Matrices , 2007, SIAM J. Sci. Comput..

[7]  Graham Horton,et al.  A multi-level solution algorithm for steady-state Markov chains , 1994, SIGMETRICS.

[8]  Tugrul Dayar,et al.  Comparison of Partitioning Techniques for Two-Level Iterative Solvers on Large, Sparse Markov Chains , 1999, SIAM J. Sci. Comput..

[9]  Yvan Notay,et al.  Analysis of Aggregation-Based Multigrid , 2008, SIAM J. Sci. Comput..

[10]  Udo R. Krieger,et al.  On a two-level multigrid solution method for finite Markov chains , 1995 .

[11]  T. Y. WilliamJ,et al.  Numerical Methods in Markov Chain Modeling , 1992, Operational Research.

[12]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[13]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[14]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[15]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[16]  Udo R. Krieger,et al.  Modeling and Analysis of Communication Systems Based on Computational Methods for Markov Chains , 1990, IEEE J. Sel. Areas Commun..

[17]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[18]  Kyle W. Kindle,et al.  An iterative aggregation-disaggregation algorithm for solving linear equations , 1986 .

[19]  W. Stewart,et al.  ITERATIVE METHODS FOR COMPUTING STATIONARY DISTRIBUTIONS OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1984 .

[20]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[21]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[22]  S. Leutenegger,et al.  ON THE UTILITY OF THE MULTI-LEVEL ALGORITHM FOR THE SOLUTION OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1994 .

[23]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[24]  Jonathan J. Hu,et al.  A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..

[25]  I. Marek,et al.  Convergence theory of some classes of iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices , 2003 .

[26]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[27]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[28]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[29]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[30]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[31]  Ivo Marek,et al.  Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices , 1998, Numer. Linear Algebra Appl..

[32]  Panayot S. Vassilevski,et al.  A generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed aggregation (SA) multigrid , 2008, Numer. Linear Algebra Appl..