Beyond Automated Multilevel Substructuring: Domain Decomposition with Rational Filtering

This paper proposes a rational filtering domain decomposition technique for the solution of large and sparse symmetric generalized eigenvalue problems. The proposed technique is purely algebraic and decomposes the eigenvalue problem associated with each subdomain into two disjoint subproblems. The first subproblem is associated with the interface variables and accounts for the interaction among neighboring subdomains. To compute the solution of the original eigenvalue problem at the interface variables we leverage ideas from contour integral eigenvalue solvers. The second subproblem is associated with the interior variables in each subdomain and can be solved in parallel among the different subdomains using real arithmetic only. Compared to rational filtering projection methods applied to the original matrix pencil, the proposed technique integrates only a part of the matrix resolvent while it applies any orthogonalization necessary to vectors whose length is equal to the number of interface variables. In...

[1]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[2]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[3]  Marc Van Barel,et al.  Designing rational filter functions for solving eigenvalue problems by contour integration , 2015 .

[4]  Marc Van Barel,et al.  Nonlinear eigenvalue problems and contour integrals , 2016, J. Comput. Appl. Math..

[5]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[6]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[7]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[8]  Yousef Saad,et al.  Domain decomposition approaches for accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems , 2018, Numer. Linear Algebra Appl..

[9]  S. H. Lui,et al.  Domain decomposition methods for eigenvalue problems , 2000 .

[10]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[11]  Yousef Saad,et al.  On correction equations and domain decomposition for computing invariant subspaces , 2007 .

[12]  Raymond H. Chan,et al.  A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices , 2017, SIAM J. Matrix Anal. Appl..

[13]  Ping Tak Peter Tang,et al.  Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..

[14]  Lloyd N. Trefethen,et al.  Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic , 2015, SIAM J. Sci. Comput..

[15]  Yousef Saad,et al.  A Hierarchical Low Rank Schur Complement Preconditioner for Indefinite Linear Systems , 2018, SIAM J. Sci. Comput..

[16]  A. Knyazev,et al.  Preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problems , 1994 .

[17]  Richard B. Lehoucq,et al.  An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics , 2004, SIAM J. Sci. Comput..

[18]  Zhaojun Bai,et al.  An Implementation and Evaluation of the AMLS Method for Sparse Eigenvalue Problems , 2008, TOMS.

[19]  Ping Tak Peter Tang,et al.  Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..

[20]  Zhaojun Bai,et al.  An Algebraic Substructuring Method for Large-Scale Eigenvalue Calculation , 2005, SIAM J. Sci. Comput..

[21]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[22]  Chao Yang,et al.  A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems , 2015, SIAM J. Sci. Comput..

[23]  Y. Saad,et al.  Spectral Schur complement techniques for symmetric Eigenvalue problems , 2016 .

[24]  Yousef Saad,et al.  Computing Partial Spectra with Least-Squares Rational Filters , 2016, SIAM J. Sci. Comput..

[25]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[26]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[27]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[28]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[29]  Yousef Saad,et al.  PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[30]  Edoardo Di Napoli,et al.  Non-Linear Least-Squares Optimization of Rational Filters for the Solution of Interior Eigenvalue Problems , 2017, ArXiv.

[31]  Andreas Stathopoulos,et al.  PRIMME: preconditioned iterative multimethod eigensolver—methods and software description , 2010, TOMS.

[32]  S. Lui Kron's method for symmetric eigenvalue problems , 1998 .

[33]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[34]  T. Rose,et al.  Substructuring in MSC/NASTRAN for large scale parallel applications , 1991 .

[35]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[36]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[37]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[38]  Constantine Bekas,et al.  Computation of Smallest Eigenvalues using Spectral Schur Complements , 2005, SIAM J. Sci. Comput..