A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear generalized minimal residual (GMRES) approach, recombining previous iterates in an optimal way, and essentially using the stand-alone one-step process as a preconditioner. In particular, the nonlinear extension of GMRES is used that was proposed by Washio and Oosterlee in [ETNA Vol. 15 (2003), pp. 165-185] for nonlinear partial differential equation problems. In the third step, a line search is performed for globalization. The resulting nonlinear GMRES (N-GMRES) optimization algorithm is applied to dense and sparse tensor decomposition test problems. The numerical tests show that ALS accelerated by N-GMRES may significantly outperform both stand-alone ALS and a standard nonlinear conjugate gradient optimization method, especially when highly accurate stationary points are desired for difficult problems. The proposed N-GMRES optimization algorithm is based on general concepts and may be applied to other nonlinear optimization problems.

[1]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[2]  Tamara G. Kolda,et al.  Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization , 2010 .

[3]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[4]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[5]  Gerard L. G. Sleijpen,et al.  Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..

[6]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[7]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[8]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[9]  Reinhold Schneider,et al.  An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .

[10]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[11]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[12]  Sabine Van Huffel,et al.  Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors , 2008, Numerical Algorithms.

[13]  Berkant Savas,et al.  Krylov-Type Methods for Tensor Computations , 2010, 1005.0683.

[14]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[15]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[16]  Cornelis W. Oosterlee,et al.  KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .

[17]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[18]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[19]  Cornelis W. Oosterlee,et al.  Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..

[20]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[21]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[22]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[23]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[24]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[25]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[26]  Hans De Sterck NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. (2012) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.1837 Steepest descent preconditioning for nonlinear , 2022 .

[27]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..