暂无分享,去创建一个
[1] Yousef Saad,et al. Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..
[2] Tamara G. Kolda,et al. Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization , 2010 .
[3] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[4] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[5] Gerard L. G. Sleijpen,et al. Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..
[6] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[7] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[8] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[9] Reinhold Schneider,et al. An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .
[10] P. Pulay. Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .
[11] Pierre Comon,et al. Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..
[12] Sabine Van Huffel,et al. Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors , 2008, Numerical Algorithms.
[13] Berkant Savas,et al. Krylov-Type Methods for Tensor Computations , 2010, 1005.0683.
[14] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[15] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[16] Cornelis W. Oosterlee,et al. KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .
[17] Cornelis W. Oosterlee,et al. On multigrid for linear complementarity problems with application to American-style options. , 2003 .
[18] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[19] Cornelis W. Oosterlee,et al. Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..
[20] David J. Thuente,et al. Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.
[21] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[22] Daniel M. Dunlavy,et al. A scalable optimization approach for fitting canonical tensor decompositions , 2011 .
[23] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[24] Lieven De Lathauwer,et al. A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..
[25] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[26] Hans De Sterck. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. (2012) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.1837 Steepest descent preconditioning for nonlinear , 2022 .
[27] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..