On the increase of computational algorithm efficiency for elasto‐plastic shell analysis
暂无分享,去创建一个
[1] Y. Başar,et al. On an isoparametric finite-element for composite laminates with finite rotations , 1993 .
[2] Y. Başar,et al. A Finite‐Rotation Theory for Elastic‐Plastic Shells under Consideration of Shear Deformations , 1991 .
[3] H. Kebari,et al. A stabilized 9‐node non‐linear shell element , 1992 .
[4] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[5] J. C. Simo,et al. Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .
[6] Jurica Sorić,et al. Elastic-plastic analysis of internally pressurized torispherical shells , 1995 .
[7] Robert L. Taylor,et al. Complementary mixed finite element formulations for elastoplasticity , 1989 .
[8] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms , 1992 .
[9] J. C. Simo,et al. A return mapping algorithm for plane stress elastoplasticity , 1986 .
[10] D. Owen,et al. Numerical solutions for elastic‐plastic problems , 1988 .
[11] Ekkehard Ramm,et al. Consistent linearization in elasto‐plastic shell analysis , 1988 .
[12] Erwin Stein,et al. Tangentiale Steifigkeitsmatrizen bei Anwendung von Projektionsverfahren in der Elastoplastizitätstheorie , 1988 .
[13] Yavuz Başar,et al. Mechanik der Flächentragwerke , 1985 .