DMSOP-cleaving enzymes are diverse and widely distributed in marine microorganisms

[1]  S. Archer,et al.  The biogeochemistry of marine dimethylsulfide , 2023, Nature Reviews Earth & Environment.

[2]  Nan Zhang,et al.  A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria. , 2023, Environmental microbiology.

[3]  G. Pohnert,et al.  Orchestrated Response of Intracellular Zwitterionic Metabolites in Stress Adaptation of the Halophilic Heterotrophic Bacterium Pelagibaca bermudensis , 2022, Marine drugs.

[4]  Xiaohua Zhang,et al.  Oceanospirillales containing the DMSP lyase DddD are key utilisers of carbon from DMSP in coastal seawater , 2022, Microbiome.

[5]  D. Scanlan,et al.  Acrylate protects a marine bacterium from grazing by a ciliate predator , 2021, Nature Microbiology.

[6]  Xiaohua Zhang,et al.  Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea , 2021, Microorganisms.

[7]  Yu-Zhong Zhang,et al.  A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA , 2021, eLife.

[8]  Xiaohua Zhang,et al.  Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments , 2020, Nature Communications.

[9]  E. Boyd,et al.  The Organosulfur Compound Dimethylsulfoniopropionate (DMSP) Is Utilized as an Osmoprotectant by Vibrio Species , 2020, Applied and Environmental Microbiology.

[10]  Mingchao Yu,et al.  Metagenomic Insights Into the Cycling of Dimethylsulfoniopropionate and Related Molecules in the Eastern China Marginal Seas , 2020, Frontiers in Microbiology.

[11]  Luis Pedro Coelho,et al.  Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome , 2019, Cell.

[12]  Tom O. Delmont,et al.  Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics , 2019, bioRxiv.

[13]  Lewis G. Spurgin,et al.  Bacteria are important dimethylsulfoniopropionate producers in coastal sediments , 2019, Nature Microbiology.

[14]  M. Moran,et al.  Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux , 2019, The ISME Journal.

[15]  Xiu-Lan Chen,et al.  Structure-Function Analysis Indicates that an Active-Site Water Molecule Participates in Dimethylsulfoniopropionate Cleavage by DddK , 2019, Applied and Environmental Microbiology.

[16]  G. Pohnert,et al.  The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle , 2018, Nature.

[17]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[18]  Qi-Long Qin,et al.  Mechanistic Insights into Dimethylsulfoniopropionate Lyase DddY, a New Member of the Cupin Superfamily. , 2017, Journal of molecular biology.

[19]  N. J. Schnicker,et al.  Structural and Biochemical Insights into Dimethylsulfoniopropionate Cleavage by Cofactor-Bound DddK from the Prolific Marine Bacterium Pelagibacter. , 2017, Biochemistry.

[20]  Dan S. Tawfik,et al.  Assigning the Algal Source of Dimethylsulfide Using a Selective Lyase Inhibitor. , 2017, ACS chemical biology.

[21]  S. Giovannoni SAR11 Bacteria: The Most Abundant Plankton in the Oceans. , 2017, Annual review of marine science.

[22]  M. Long,et al.  Processes driving seasonal variability in DMS, DMSP, and DMSO concentrations and turnover in coastal Antarctic waters , 2017 .

[23]  P. Schmitt‐Kopplin,et al.  Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory , 2016, Science.

[24]  Samuel H. Payne,et al.  The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol , 2016, Nature Microbiology.

[25]  J. Murrell,et al.  A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. , 2016, Environmental microbiology.

[26]  J. Todd,et al.  Enzymatic breakage of dimethylsulfoniopropionate-a signature molecule for life at sea. , 2016, Current opinion in chemical biology.

[27]  Qi-Long Qin,et al.  Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidase‐like bacterial Dimethylsulfoniopropionate lyase: a new enzyme from an old fold , 2015, Molecular microbiology.

[28]  Dan S. Tawfik,et al.  Identification of the algal dimethyl sulfide–releasing enzyme: A missing link in the marine sulfur cycle , 2015, Science.

[29]  N. J. Schnicker,et al.  Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase , 2015, PloS one.

[30]  A. Lang,et al.  A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments , 2015, Nature Communications.

[31]  Qi-Long Qin,et al.  Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide , 2014, Proceedings of the National Academy of Sciences.

[32]  S. Giovannoni,et al.  Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium , 2012, The ISME Journal.

[33]  M. Sullivan,et al.  Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes , 2011, Nature Reviews Microbiology.

[34]  M. Moran,et al.  Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP) , 2011, Front. Microbio..

[35]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[36]  M. Sullivan,et al.  DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria , 2011, The ISME Journal.

[37]  J. Todd,et al.  The dddP gene of Roseovarius nubinhibens encodes a novel lyase that cleaves dimethylsulfoniopropionate into acrylate plus dimethyl sulfide. , 2010, Microbiology.

[38]  C. Brearley,et al.  Molecular dissection of bacterial acrylate catabolism--unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. , 2010, Environmental microbiology.

[39]  G. Nevitt,et al.  The use of Odors at Different Spatial Scales: Comparing Birds with Fish , 2008, Journal of Chemical Ecology.

[40]  Karen N. Allen,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[41]  S. Giovannoni,et al.  SAR11 marine bacteria require exogenous reduced sulphur for growth , 2008, Nature.

[42]  S. Sievert,et al.  The sulfur cycle , 2007 .

[43]  Sergio M. Vallina,et al.  Strong Relationship Between DMS and the Solar Radiation Dose over the Global Surface Ocean , 2007, Science.

[44]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[45]  M. Moran,et al.  Overview of the Marine Roseobacter Lineage , 2005, Applied and Environmental Microbiology.

[46]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[47]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[48]  W. Sunda,et al.  An antioxidant function for DMSP and DMS in marine algae , 2002, Nature.

[49]  Peter A. Lee,et al.  A review of dimethylsulfoxide in aquatic environments , 1999 .

[50]  M. Moran,et al.  Dimethylsulfoniopropionate and Methanethiol Are Important Precursors of Methionine and Protein-Sulfur in Marine Bacterioplankton , 1999, Applied and Environmental Microbiology.

[51]  D. Joyce,et al.  DETECTION AND QUANTIFICATION OF FUSARIUM CULMORUM AND FUSARIUM GRAMINEARUM IN CEREALS USING PCR ASSAYS , 1998 .

[52]  M. Steinke,et al.  Grazing-activated chemical defence in a unicellular marine alga , 1997, Nature.

[53]  M. Moran,et al.  Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture , 1996, Applied and environmental microbiology.

[54]  G O Kirst,et al.  Salinity Tolerance of Eukaryotic Marine Algae , 1990 .

[55]  A. Strøm,et al.  Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli , 1988, Journal of bacteriology.

[56]  M. D. Keller,et al.  MEDIA FOR THE CULTURE OF OCEANIC ULTRAPHYTOPLANKTON 1,2 , 1987 .

[57]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[58]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[59]  J. Beringer R factor transfer in Rhizobium leguminosarum. , 1974, Journal of general microbiology.

[60]  O. Carrión,et al.  Molecular discoveries in microbial DMSP synthesis. , 2023, Advances in Microbial Physiology.

[61]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[62]  J. D. Kinsey,et al.  Effects of iron limitation and UV radiation on Phaeocystis antarctica growth and dimethylsulfoniopropionate, dimethylsulfoxide and acrylate concentrations , 2016 .

[63]  A. Hanson,et al.  Identification and stereospecificity of the first three enzymes of 3-dimethylsulfoniopropionate biosynthesis in a chlorophyte alga , 1998 .

[64]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.