Asymptotics for a gradient system with memory term

Given a Hilbert space $H$ and a function $\Phi:H\to\mathbb R$ of class $\mathcal C^1$, we investigate the asymptotic behavior of the trajectories associated to the following dynamical system $$(S) \qquad \dot x(t) +\frac{1}{k(t)}\, \int_{t_0}^t h(s)\, \nabla \Phi(x(s))\, ds=0, \qquad t\geq t_0,$$ where $h$, $k: [t_0,+\infty)\to \mathbb R_+^*$ are continuous maps. When $k(t) \sim \int_{t_0}^t h(s)\, ds$ as $t\to+\infty$, this equation can be interpreted as an averaged gradient system. We define a natural energy function $E$ associated to system $(S)$ and we give conditions which ensure that $E(t)$ decreases to $\inf \Phi$ as $t\to +\infty$. When $\Phi$ is convex and has a set of non-isolated minima, we show that the trajectories of $(S)$ cannot converge if the average process does not ''privilege'' the recent past. A special attention is devoted to the particular case $h(t)=t^\alpha$, $k(t)=t^\beta$, which is fully treated.

[1]  A. Haraux,et al.  Convergence of Solutions of Second-Order Gradient-Like Systems with Analytic Nonlinearities , 1998 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  A. Haraux,et al.  Systèmes dynamiques dissipatifs et applications , 1991 .

[4]  Hugo Ribeiro,et al.  Notas de Matemática , 1949 .

[5]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[6]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[7]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[8]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[9]  F. B. Introduction to Bessel Functions , 1939, Nature.

[10]  Sébastien Gadat,et al.  Second-order differential equations with asymptotically small dissipation and piecewise flat potentials , 2009 .

[11]  Ronald E. Bruck Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .

[12]  S. Gadat,et al.  On the long time behavior of second order differential equations with asymptotically small dissipation , 2007, 0710.1107.

[13]  H. Attouch,et al.  THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .

[14]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .