The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation

We apply the framework of block-encodings, introduced by Low and Chuang (under the name standard-form), to the study of quantum machine learning algorithms and derive general results that are applicable to a variety of input models, including sparse matrix oracles and matrices stored in a data structure. We develop several tools within the block-encoding framework, such as singular value estimation of a block-encoded matrix, and quantum linear system solvers using block-encodings. The presented results give new techniques for Hamiltonian simulation of non-sparse matrices, which could be relevant for certain quantum chemistry applications, and which in turn imply an exponential improvement in the dependence on precision in quantum linear systems solvers for non-sparse matrices. In addition, we develop a technique of variable-time amplitude estimation, based on Ambainis' variable-time amplitude amplification technique, which we are also able to apply within the framework. As applications, we design the following algorithms: (1) a quantum algorithm for the quantum weighted least squares problem, exhibiting a 6-th power improvement in the dependence on the condition number and an exponential improvement in the dependence on the precision over the previous best algorithm of Kerenidis and Prakash; (2) the first quantum algorithm for the quantum generalized least squares problem; and (3) quantum algorithms for estimating electrical-network quantities, including effective resistance and dissipated power, improving upon previous work.

[1]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[2]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[4]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[5]  Amnon Ta-Shma,et al.  Inverting well conditioned matrices in quantum logspace , 2013, STOC '13.

[6]  L. Wossnig,et al.  Quantum Linear System Algorithm for Dense Matrices. , 2017, Physical review letters.

[7]  Tsuyoshi Ito,et al.  Approximate Span Programs , 2016, ICALP.

[8]  W. D. Cairns,et al.  THE MATHEMATICAL ASSOCIATION OF AMERICA. , 1918, Science.

[9]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[10]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[11]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[12]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[13]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[14]  Ashley Montanaro,et al.  Quantum walk speedup of backtracking algorithms , 2015, Theory Comput..

[15]  Yang Liu,et al.  Fast quantum algorithms for least squares regression and statistic leverage scores , 2015, Theor. Comput. Sci..

[16]  Shang-Hua Teng,et al.  Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.

[17]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[18]  Chunhao Wang,et al.  A quantum algorithm for simulating non-sparse Hamiltonians , 2018, Quantum Inf. Comput..

[19]  Guoming Wang,et al.  Efficient quantum algorithms for analyzing large sparse electrical networks , 2013, Quantum Inf. Comput..

[20]  Srinivasan Arunachalam,et al.  On the Robustness of Bucket Brigade Quantum RAM , 2015, TQC.

[21]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[22]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[23]  Stacey Jeffery,et al.  Time-Efficient Quantum Walks for 3-Distinctness , 2013, ICALP.

[24]  Leonardo Novo,et al.  Corrected quantum walk for optimal Hamiltonian simulation , 2016, Quantum Inf. Comput..

[25]  Aleksandrs Belovs,et al.  Quantum Walks and Electric Networks , 2013, 1302.3143.

[26]  Andrew M. Childs,et al.  Quantum linear systems algorithm with exponentially improved dependence on precision , 2015 .

[27]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[28]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[29]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[30]  Leonardo Novo,et al.  Improved Hamiltonian simulation via a truncated Taylor series and corrections , 2016, Quantum Inf. Comput..

[31]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[32]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[33]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[34]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[35]  I. Chuang,et al.  Hamiltonian Simulation by Uniform Spectral Amplification , 2017, 1707.05391.

[36]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[37]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[38]  R. Feynman An Operator calculus having applications in quantum electrodynamics , 1951 .

[39]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[40]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[41]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[42]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[43]  Guoming Wang Quantum Algorithm for Linear Regression , 2017 .

[44]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[45]  M. Schuld,et al.  Prediction by linear regression on a quantum computer , 2016, 1601.07823.

[46]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[47]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[48]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[49]  Satish Rao,et al.  A new approach to computing maximum flows using electrical flows , 2013, STOC '13.

[50]  Robert Karplus,et al.  A Note on Saturation in Microwave Spectroscopy , 1948 .