Digital description of products, processes and resources for task-oriented programming of assembly systems

The ability to enable a fast modification and system-change, in order to fulfil quickly changing market needs, is one of the essential requirements of future production systems. Against this background, the central objective of this paper is the discussion of a new concept to simplify the application of task-oriented programming for assembly systems. For this purpose, a generic and comprehensible concept is used for the modeling of resources, processes and products. The core aspect is a method for the definition of multi-vendor skills in assembly systems. The implementation of the concepts in the engineering standard AutomationML and the integration into a programming system complete this contribution.

[1]  Birgit Vogel-Heuser,et al.  Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik , 2017, Handbuch Industrie 4.0.

[2]  José Barata,et al.  A Multiagent Control System for Shop Floor Assembly , 2007, HoloMAS.

[3]  Honghai Liu,et al.  Intelligent Robotics and Applications , 2014, Lecture Notes in Computer Science.

[4]  Nobuto Matsuhira,et al.  Virtual Robot Experimentation Platform V-REP: A Versatile 3D Robot Simulator , 2010, SIMPAR.

[5]  Andreas Selig Informationsmodell zur funktionalen Typisierung von Automatisierungsgeräten , 2011 .

[6]  Jürgen Beyerer,et al.  PPRS: Production skills and their relation to product, process, and resource , 2013, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA).

[7]  Stefan Kluge Methodik zur fähigkeitsbasierten Planung modularer Montagesysteme , 2011 .

[8]  Tamio Arai,et al.  Real-time task decomposition and allocation for a multi-agent robotic assembly cell , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[9]  Suk-Hwan Suh,et al.  A roadmap for implementing new manufacturing technology based on STEP-NC , 2016, J. Intell. Manuf..

[10]  Giovanna Di Marzo Serugendo,et al.  An architecture for self-managing evolvable assembly systems , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[11]  T. I. El-Wardany,et al.  Finite Element Analysis of Residual Stress in Ti-6Al-4V Alloy Plate Induced by Deep Rolling Process under Complex Roller Path , 2014 .

[12]  Klaus-Dieter Thoben,et al.  An approach to monitoring quality in manufacturing using supervised machine learning on product state data , 2013, Journal of Intelligent Manufacturing.

[13]  Jie Gao,et al.  Service-oriented manufacturing: a new product pattern and manufacturing paradigm , 2011, J. Intell. Manuf..

[14]  Hong-Seok Park,et al.  Development for automatic control system , 2008, 2008 Third International Forum on Strategic Technologies.

[15]  A. Knoll,et al.  Towards adaptable manufacturing systems , 2013, 2013 IEEE International Conference on Industrial Technology (ICIT).

[16]  Gunther Reinhart,et al.  Automatic Configuration of Robot Systems - Upward and Downward Integration , 2011, ICIRA.

[17]  Jun Ota,et al.  Agile Assembly System by “Plug and Produce” , 2000 .

[18]  Jeffrey G. Gray,et al.  Model-driven engineering of industrial process control applications , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[19]  Ching-Chin Chern,et al.  Solving a multi-objective master planning problem with substitution and a recycling process for a capacitated multi-commodity supply chain network , 2014, J. Intell. Manuf..

[20]  Gunther Reinhart,et al.  Adaptive and Device Independent Planning Module for Task-Oriented Programming of Assembly Systems☆ , 2015 .

[21]  Maximilian Schmidt Konzeption und Einsatzplanung flexibel automatisierter Montagesysteme , 1992 .

[22]  Alexander Fay,et al.  Automatic generation of PLC code beyond the nominal sequence , 2008, 2008 IEEE International Conference on Emerging Technologies and Factory Automation.

[23]  Detlef Zühlke,et al.  Primos - a novel concept to program complex assembly processes , 2005, ICINCO.

[24]  Birgit Vogel-Heuser,et al.  Automatic generation of field control strategies for supporting (re-)engineering of manufacturing systems , 2012, J. Intell. Manuf..

[25]  Verena Voß Wiederverwendbare Simulationsmodelle für die domänen- und disziplinübergreifende Produktentwicklung , 2012 .

[26]  Pedro Ferreira,et al.  Dynamic skill allocation methodology for evolvable assembly systems , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[27]  Gunther Reinhart,et al.  Classification, Modelling and Mapping of Skills in Automated Production Systems , 2014 .

[28]  Lenny Delligatti SysML Distilled: A Brief Guide to the Systems Modeling Language , 2013 .

[29]  W. Kastner,et al.  The Evolution of Factory and Building Automation , 2011, IEEE Industrial Electronics Magazine.

[30]  Damien Trentesaux,et al.  Distributed manufacturing control with extended CNP interaction of intelligent products , 2012, J. Intell. Manuf..

[31]  Mariusz Deja,et al.  Feature-based generation of machining process plans for optimised parts manufacture , 2013, J. Intell. Manuf..

[32]  Michael Tiegelkamp,et al.  IEC 61131-3: Programming Industrial Automation Systems: Concepts and Programming Languages, Requirements for Programming Systems, Decision-Making Aids , 2001 .

[33]  Rolf Dieter Schraft,et al.  Control Architecture for Robot Cells to Enable Plug'n'Produce , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  Gunther Reinhart,et al.  Efficient application of task-oriented programming for assembly systems , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[35]  Panganamala Ramana Kumar,et al.  Cyber–Physical Systems: A Perspective at the Centennial , 2012, Proceedings of the IEEE.

[36]  Michael J. Pratt,et al.  Introduction to ISO 10303 - the STEP Standard for Product Data Exchange. pp , 2001, J. Comput. Inf. Sci. Eng..

[37]  David G. Stork,et al.  Pattern Classification , 1973 .

[38]  Klas Nilsson,et al.  Knowledge-Based Reconfiguration of Automation Systems , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[39]  M. S. Essers,et al.  Developing concepts for improved efficiency of robot work preparation , 2013 .

[40]  Alexander Verl,et al.  Automatic Generation of Robot Applications Using a Knowledge Integration Framework , 2010, ISR/ROBOTIK.

[41]  Christian Diedrich,et al.  Automated PLC software generation based on standardized digital process information , 2007, 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007).

[42]  Martin Ostgathe System zur produktbasierten Steuerung von Abläufen in der auftragsbezogenen Fertigung und Montage , 2012 .

[43]  Jerzy W. Rozenblit,et al.  Simulation-based planning of robot tasks in flexible manufacturing , 1991, [1991] Proceedings. The Second Annual Conference on AI, Simulation and Planning in High Autonomy Systems.

[44]  Gunther Reinhart,et al.  Current State Model for Easy Reconfiguration of Robot Systems and Offline-Programming-Environments , 2010, ISR/ROBOTIK.

[45]  Charlotta Johnsson,et al.  Towards a seamless integration between process modeling descriptions at business and production levels: work in progress , 2012, Journal of Intelligent Manufacturing.

[46]  Rainer Draht,et al.  Datenaustausch in der Anlagenplanung mit AutomationML , 2010 .

[47]  Shigeto Aramaki,et al.  Representation and Programming for a Robotic Assembly Task Using an Assembly Structure , 2007, 7th IEEE International Conference on Computer and Information Technology (CIT 2007).

[48]  Joseph Schmuller,et al.  ANSI/ISO C++ Professional Programmer's Handbook , 1999 .