A Modular Semantically Secure Wiretap Code with Shared Key for Weakly Symmetric Channels

We study the problem of secure communication over a wiretap channel when the sender and the receiver have access to a shared secret key. We propose a modular secure construction of wiretap codes for a shared key setting that achieves secrecy capacity for weakly symmetric wiretap channels, and has computationally efficient encoding and decoding. The construction’s security and reliability guarantees are in terms of semantic security, which is the strongest notion of security for these channels, and worst case error, respectively. We give concrete parameters of the construction for finite length messages to obtain a desired level of security and reliability.

[1]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[2]  Nan Liu,et al.  Wiretap channel with shared key , 2010, 2010 IEEE Information Theory Workshop.

[3]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[4]  H. Vincent Poor,et al.  Secure Broadcasting Using Independent Secret Keys , 2017, IEEE Transactions on Communications.

[5]  S. K. Leung-Yan-Cheong On a special class of wiretap channels , 1976 .

[6]  Alexander Vardy,et al.  Semantic Security for the Wiretap Channel , 2012, CRYPTO.

[7]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[8]  Alexander Vardy,et al.  Channel upgrading for semantically-secure encryption on wiretap channels , 2013, 2013 IEEE International Symposium on Information Theory.

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[11]  Zhu Han,et al.  Polar Coding for the Wiretap Channel With Shared Key , 2018, IEEE Transactions on Information Forensics and Security.

[12]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[13]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[14]  Reihaneh Safavi-Naini,et al.  Hash-then-Encode: A Modular Semantically Secure Wiretap Code , 2017 .

[15]  Neri Merhav Shannon's Secrecy System With Informed Receivers and its Application to Systematic Coding for Wiretapped Channels , 2008, IEEE Transactions on Information Theory.

[16]  Hirosuke Yamamoto Rate-distortion theory for the Shannon cipher system , 1997, IEEE Trans. Inf. Theory.

[17]  Himanshu Tyagi,et al.  Semantically-Secure Coding Scheme Achieving the Capacity of a Gaussian Wiretap Channel , 2014, ArXiv.

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  Russell Impagliazzo,et al.  How to recycle random bits , 1989, 30th Annual Symposium on Foundations of Computer Science.

[20]  Masahito Hayashi,et al.  Construction of wiretap codes from ordinary channel codes , 2010, 2010 IEEE International Symposium on Information Theory.

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Shigeki Miyake,et al.  Construction of wiretap channel codes by using sparse matrices , 2009, 2009 IEEE Information Theory Workshop.

[23]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..