Time-Encoding Analog-to-Digital Converters: Bridging the Analog Gap to Advanced Digital CMOS-Part 1: Basic Principles

The scaling of CMOS technology deep into the nanometer range has created challenges for the design of highperformance analog ICs. The shrinking supply voltage and presence of mismatch and noise restrain the dynamic range, causing analog circuits to be large in area and have a high power consumption in spite of the process scaling. Analog circuits based on time encoding [1], [2] and hybrid analog/digital signal processing [3] have been developed to overcome these issues. Realizing analog circuit functionality with highly digital circuits results in more scalable design solutions that can achieve excellent performance. This article reviews the basic principles of time encoding applied, in particular, to analog-to-digital converters (ADCs) based on voltage-controlled oscillators (VCOs), one of the most successful time-encoding techniques to date.

[1]  Pavan Kumar Hanumolu,et al.  Analog Filter Design Using Ring Oscillator Integrators , 2012, IEEE Journal of Solid-State Circuits.

[2]  Behzad Razavi,et al.  The Ring Oscillator [A Circuit for All Seasons] , 2019, IEEE Solid-State Circuits Magazine.

[3]  Yannis P. Tsividis,et al.  Mixed-Domain Systems and Signal Processing Based on Input Decomposition , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Jaewook Kim,et al.  Analysis and Design of Voltage-Controlled Oscillator Based Analog-to-Digital Converter , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  E. Roza,et al.  Analog-to-digital conversion via duty-cycle modulation , 1997 .

[6]  Y. Makino,et al.  An all-digital analog-to-digital converter with 12-μV/LSB using moving-average filtering , 2003, IEEE J. Solid State Circuits.

[7]  Mike Shuo-Wei Chen,et al.  A Noise-Shaped VCO-Based Nonuniform Sampling ADC With Phase-Domain Level Crossing , 2019, IEEE Journal of Solid-State Circuits.

[8]  Jihun Lee,et al.  A 0.01-mm2 Mostly Digital Capacitor-Less AFE for Distributed Autonomous Neural Sensor Nodes , 2018, IEEE Solid-State Circuits Letters.

[9]  Behzad Razavi,et al.  A study of phase noise in CMOS oscillators , 1996, IEEE J. Solid State Circuits.

[10]  Chih-Chan Tu,et al.  A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[11]  Wenlong Jiang,et al.  A ±50-mV Linear-Input-Range VCO-Based Neural-Recording Front-End With Digital Nonlinearity Correction , 2017, IEEE Journal of Solid-State Circuits.

[12]  Georges G. E. Gielen,et al.  Supply-Noise-Resilient Design of a BBPLL-Based Force-Balanced Wheatstone Bridge Interface in 130-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[13]  Maysam Ghovanloo,et al.  Towards a 1.1 mm2 free-floating wireless implantable neural recording SoC , 2018, 2018 IEEE Custom Integrated Circuits Conference (CICC).

[14]  Timothy G. Constandinou,et al.  Time Domain Processing Techniques Using Ring Oscillator-Based Filter Structures , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Tsuyoshi Uchiyama,et al.  High-Resolution Magneto-Impedance Sensor With TAD for Low Noise Signal Processing , 2014, IEEE Transactions on Magnetics.

[16]  Frank Opteynde A maximally-digital radio receiver front-end , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[17]  M.Z. Straayer,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time $\Sigma\Delta$ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, IEEE Journal of Solid-State Circuits.

[18]  Mohammadhadi Danesh,et al.  A Highly Digital Second-Order Oversampling TDC , 2018, IEEE Solid-State Circuits Letters.

[19]  Pieter Rombouts,et al.  A Pulse Frequency Modulation Interpretation of VCOs Enabling VCO-ADC Architectures With Extended Noise Shaping , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Sheng-Jui Huang,et al.  28.3 A 125MHz-BW 71.9dB-SNDR VCO-based CT ΔΣ ADC with segmented phase-domain ELD compensation in 16nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[21]  Luis Hernández,et al.  Analytical Evaluation of VCO-ADC Quantization Noise Spectrum Using Pulse Frequency Modulation , 2015, IEEE Signal Processing Letters.

[22]  Georges G. E. Gielen,et al.  A 42 fJ/Step-FoM Two-Step VCO-Based Delta-Sigma ADC in 40 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[23]  A.A. Abidi,et al.  Phase Noise and Jitter in CMOS Ring Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[24]  Andreas Wiesbauer,et al.  SNDR Limits of Oscillator-Based Sensor Readout Circuits , 2018, Sensors.

[25]  E. Fitch The spectrum of modulated pulses , 1947 .

[26]  Wim Dehaene,et al.  A 5-GS/s 7.2-ENOB Time-Interleaved VCO-Based ADC Achieving 30.5 fJ/cs , 2020, IEEE Journal of Solid-State Circuits.

[27]  Kofi A. A. Makinwa,et al.  A VCO Based Highly Digital Temperature Sensor With 0.034 °C/mV Supply Sensitivity , 2016, IEEE Journal of Solid-State Circuits.

[28]  László Tóth,et al.  Perfect recovery and sensitivity analysis of time encoded bandlimited signals , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Ian Galton,et al.  A Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ADC , 2010, IEEE Journal of Solid-State Circuits.

[30]  M. Høvin,et al.  Delta-sigma modulators using frequency-modulated intermediate values , 1997, IEEE J. Solid State Circuits.

[31]  Robert Bogdan Staszewski,et al.  A 0.2-V 30-MS/s 11b-ENOB Open-Loop VCO-Based ADC in 28-nm CMOS , 2018, IEEE Solid-State Circuits Letters.

[32]  Andreas Wiesbauer,et al.  A Coarse-Fine VCO-ADC for MEMS Microphones With Sampling Synchronization by Data Scrambling , 2020, IEEE Solid-State Circuits Letters.

[33]  Pietro Andreani,et al.  An Accurate Analysis of Phase Noise in CMOS Ring Oscillators , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  Georges Gielen,et al.  A Robust BBPLL-Based 0.18- $\mu$ m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range , 2019, IEEE Journal of Solid-State Circuits.

[35]  Edgar Sánchez-Sinencio,et al.  A Continuous Time Multi-Bit $\Delta \Sigma$ ADC Using Time Domain Quantizer and Feedback Element , 2011, IEEE Journal of Solid-State Circuits.

[36]  Enrique Prefasi,et al.  A 7 mW 20 MHz BW Time-Encoding Oversampling Converter Implemented in a 0.08 mm$^{2}$ 65 nm CMOS Circuit , 2011, IEEE Journal of Solid-State Circuits.